Строение двигателя
Машина едет за счёт вращения колёс, имеющих сцепление с дорогой. Колёса вращаются за счёт трансмиссии, передающей на них крутящий момент от двигателя. А вот этот самый крутящий момент является продуктом преобразования энергии сжигания топлива в механическую работу, для чего собственно и предназначен двигатель внутреннего сгорания (ДВС).
В славное семейство ДВС входят роторные, газотурбинные и поршневые двигатели. Именно последние находятся под капотом львиной доли автомобилей для частной и коммерческой эксплуатации. О них и поговорим и рассмотрим схемы в разрезе далее.
Устройство двигателя
Итак, поршневой ДВС является сердцем большинства современных легковушек и включает в себя обязательный джентльменский набор из корпуса, двух механизмов и семи систем. Посмотрите одну из схем устройства двигателя в разрезе:
Корпус связывает в единое целое головку блока цилиндров, в которой находятся основные элементы газораспределительного механизма (ГРМ). Функция ГРМ — обеспечивать своевременную подачу топливо-воздушной смеси (воздуха) и отвод отработанных газов. ГРМ приводится в действие посредством цепи или ремня от зубчатого венца маховика коленвала, являющегося частью кривошипно-шатунного механизма, преобразующего возвратно-поступательные движения поршней в тот самый крутящий момент, который снимается с коленчатого вала и через трансмиссию передается колёсам.
Системы Двигателя (ДВС) на схеме в разрезе
- Впускная. Горючее не сможет воспламениться без доступа кислорода, и именно впускная система обеспечивает забор, фильтрацию и подачу в нужном объёме воздуха в двигатель.
- Топливная обеспечивает питание мотора. Для современных двигателей в качестве горючего используются бензин, ДТ, биотопливо, водород, как перспективное топливо, сводящее к минимуму отрицательное воздействие на окружающую среду.
- Зажигание обеспечивает воспламенение рабочей смеси. В дизельных двигателях происходит её самовоспламенение.
- Смазка для циркуляции моторного масла, снижающего трение между движущимися частями, создающего защитные плёнки на рабочих поверхностях и нивелирующего негативные эффекты от металлической микро стружки, продуктов сгорания и других вредных факторов работы мотора.
- Охлаждение. Наиболее распространённым является охлаждение ДВС путём принудительной циркуляции антифризов, на худой конец — воды. Есть примеры и воздушного охлаждения мотора, такие как канувший в лету “Запорожец” и широко известный в узких кругах “Porsche 911”.
- Выпускная система отводит от двигателя продукты сгорания, их частичную нейтрализацию и выброс в атмосферу.
- Управление двигателем — это совокупность датчиков и электронных элементов управления остальными системами, завязанная в современных машинах на бортовой компьютер.
Как выглядит схема ДВС в разрезе:
Как работает двигатель внутреннего сгорания (ДВС)
Воспламенения рабочей смеси, состоящей из топлива, воздуха и остатков отработанных газов, происходит в момент максимального верхнего положения поршня, чем достигается наивысшая степень сжатия смеси. Тепловое расширение сгорающих газов толкает поршень вниз, что приводит к вращению коленчатого вала. Двум оборотам коленчатого вала, в четырёхтактном двигателе, соответствуют четыре этапа работы поршня в цилиндре. Для лучшего понимания, рассмотрите еще одну схему ДВС в разрезе:
Как видите на схеме в разрезе показаны: впуск, сжатие, рабочий ход и выпуск. Подробнее об этом далее.
- Впуск. Поршень идёт вниз. Топливно-воздушная смесь — это продукт совместной деятельности топливной и выпускной систем. В бензиновых двигателях с центральным и распределённым впрыском она образуется во впускном коллекторе. В бензиновых моторах с непосредственным впрыском и в дизелях, данная смесь образуется непосредственно в камере сгорания.
- Сжатие. Ход вверх. При закрытых впускных клапанах происходит смешивание и сжатие смеси до максимальных значений. Апофеозом этого процесса является принудительное или самовоспламенение смеси, знаменующее начало третьего такта.
- Рабочий ход. Поршень идёт вниз. Двигаясь к своей нижней точке, в паре с шатуном передают энергию расширения горящих газов коленвалу.
- Выпуск. Поршень идёт вверх. Через открывающиеся выпускные клапаны ГРМ, отработанные газы отводятся в выпускную систему, где глушатся, охлаждаются и очищаются перед выбросом в окружающую среду.
Стабильная, равномерная работа мотора достигается тем, что цилиндры не совпадают по фазам. Пока один цилиндр совершает полезную работу, в других идут подготовительные циклы, поэтому КПД двигателей внутреннего сгорания не высок (около 40%). Для повышения КПД ДВС и снижения вредных выбросов моторы турбируют, совершенствуют электронное управление рабочим циклом, делая более полным и эффективным сгорание топлива.
Схема цилиндра ДВС в разрезе:
Несколько важных моментов, связанных с устройством ДВС
При всём совершенстве современной электроники, на неё не стоит полагаться на все сто. Знание устройства и принципа работы мотора поможет даже новичку вовремя заметить тревожные симптомы, а значит избежать неприятных последствий поломок и затрат на их ликвидацию. О важности именно ручного контроля уровня масла в картере мы уже неоднократно писали в материалах.
На что ещё нужно обращать внимание?
Не так уж редки случаи растяжения цепи или разрыва приводного ремня ГРМ, особенно у авто с вторичного рынка. Последствия разрыва ремня ГРМ особенно печальны и дороги в устранении. Стоит следить за физическим состоянием ремня, и при появлении бахромы и других визуально определяемых следов его износа, менять на новый без всяких колебаний. Ослабление ремня или цепи привода ГРМ, проявляется в виде свистящих и гремящих звуков, а также определяется тактильно. Неполадки в головке блока цилиндров могут проявлять себя “пением сверчков” кулачкового привода клапанов. Полезно также следить за напором и характером выхлопных газов. Слегка прерывистый напор, с ритмичным чередованием усилений и ослаблений выхлопа, свидетельствует о нормальном рабочем цикле двигателя. Ослабленный и равномерный выхлоп, или “выстрелы” из выхлопной трубы, а также наличие в газах сажи, струйки топлива, и особенно — тосола, является показанием для вызова эвакуатора и скорейшего визита на СТО. Есть ряд ситуаций, когда допустима буксировка автомобиля или можно дотянуть до мастера своим ходом, но новичку не всегда просто определиться с предварительным диагнозом, поэтому лучше не рисковать. Деньги, уплаченные за эвакуацию — ничто, по сравнению с затратами на капитальный ремонт двигателя, или лечение “клина” в автоматических коробках передач.
Итак, мы рассказали и показали разные схемы двигателя в разрезе, надеемся, что информация была вам полезна. Здоровья вам и вашему автомобилю. Удачи на дорогах.
Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей
Несмотря на то что в автошколах немало внимания уделяется вопросам технического устройства автомобиля, полученных знаний хватает далеко не всем новичкам. Данная книга призвана восполнить этот пробел. Она поможет вам в короткие сроки разобраться в том, что представляет собой современный автомобиль, из каких узлов и агрегатов он состоит, почему при наличии определенных неисправностей машину нельзя эксплуатировать и т. д. Легкий и доступный стиль изложения и большое количество цветных иллюстраций способствуют быстрому усвоению предлагаемого материала даже теми, кто до настоящего момента никогда не имел дела с автомобилем. Книга рекомендована журналом «Автомир» и интернет-порталом www.avtotut.ru.
Оглавление
- Введение
- 1. Общее устройство автомобиля
- 2. Двигатель внутреннего сгорания (ДВС)
Приведённый ознакомительный фрагмент книги Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей предоставлен нашим книжным партнёром — компанией ЛитРес.
2. Двигатель внутреннего сгорания (ДВС)
Общее устройство и работа ДВС
Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).
Существуют еще электромобили, но их мы рассматривать не будем.
Рис. 2.1. Внешний вид двигателя внутреннего сгорания
В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.
При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.
ПРИМЕЧАНИЕ
В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипношатунного и газораспределительного, а также из следующих систем:
♦ выпуска отработавших газов;
Основные детали ДВС:
♦ головка блока цилиндров;
♦ распределительный вал с кулачками;
Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.
Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:
а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)
Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).
Рис. 2.3. Поршень
Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.
Рис. 2.4. Поршень с шатуном:
1 — шатун в сборе; 2 — крышка шатуна; 3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца
Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).
В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.
Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.
Рис. 2.5. Коленчатый вал с маховиком:
1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника
Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.
А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра.
В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливо-воздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт.
Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливо-воздушной смеси.
В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных — от сжатия.
Рис. 2.6. Свеча зажигания
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.
Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются.
А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.
Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливо-воздушной смеси, которую приготовил карбюратор или инжектор. Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливо-воздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.
При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его.
Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).
Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол-оборота.
После того как топливо-воздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.
Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °C.
Из чего состоит и как работает двигатель автомобиля?
— У каждого из нас есть определенный автомобиль, однако лишь некоторые водители задумываются о том, как устроен двигатель автомобиля. Нужно понимать также, что полностью знать устройство двигателя автомобиля необходимо лишь специалистам, работающим на СТО. К примеру, у многих из нас есть различные электронные устройства, но это вовсе не означает, что мы должны понимать, как они устроены. Мы просто пользуемся ими по прямому назначению. Однако с машиной ситуация немного другая.
— Все мы понимаем, что появление неполадок в двигателе автомобиля напрямую влияет на наше здоровье и жизнь. От правильной работы силового агрегата нередко зависит качество езды, а также безопасность людей, которые находятся в автомобиле. По этой причине, рекомендуем уделить внимание изучению данной статьи о том, как работает двигатель автомобиля и из чего он состоит.
• История разработки автомобильного двигателя:
— В переводе с оригинального латинского языка двигатель или мотор означает «приводящий в движение». Сегодня двигателем называют определенное устройство, предназначенное для преобразования одного из видов энергии в механическую. Самыми популярными сегодня считаются двигатели внутреннего сгорания, типы которых бывают разными. Первый такой мотор появился в 1801 году, когда Филипп Лебон из Франции запатентовал мотор, который функционировал на светильном газе. После этого свои разработки представили Август Отто и Жан Этьен Ленуар. Известно, что Август Отто первым запатентовал 4-тактный двигатель. До нашего времени строение двигателя практически не изменилось.
— В 1872 году состоялся дебют американского двигателя, который работал на керосине. Однако данную попытку трудно было назвать удачной, поскольку керосин не мог нормально взрываться в цилиндрах. Уже через 10 лет Готлиб Даймлер презентовал свой вариант двигателя, который работал на бензине, причем работал довольно неплохо.
• Рассмотрим современные типы двигателей автомобиля и разберемся, к какому из них принадлежит ваша машина.
• Типы автомобильных двигателей:
— Поскольку наиболее распространенным в наше время считают двигатель внутреннего сгорания, рассмотрим типы двигателей, которыми оснащаются сегодня почти все машины. ДВС – это далеко не наилучший тип двигателя, однако именно его используют во многих транспортных средствах.
Классификация двигателей автомобиля:
• Дизельные двигатели. Подача дизельного топлива осуществляется в цилиндры посредством специальных форсунок. Такие моторы не нуждаются в электрической энергии для работы. Она им нужна лишь для запуска силового агрегата.
• Бензиновые двигатели. Они бывают карбюраторными и инжекторными. Сегодня используется несколько типов систем впрыска и карбюраторов. Работают такие моторы на бензине.
• Газовые двигатели. В таких двигателях может использоваться сжатый или сжиженный газ. Такие газы получают с помощью преобразования дерева, угля либо торфа в газообразное топливо.
• Как работает двигатель и из чего он состоит?
— Принцип работы двигателя автомобиля – это вопрос, интересующий практически каждого автовладельца. В ходе первого ознакомления со строением двигателя все выглядит очень сложным. Однако в реальности, с помощью тщательного изучения, устройство двигателя становится вполне понятным. В случае необходимости знания о принципе работы двигателя можно использовать в жизни.
— 1. Блок цилиндров представляет собой своеобразный корпус мотора. Внутри него расположена система каналов, которая используется для охлаждения и смазки силового агрегата. Он используется в качестве основы для дополнительного оборудования, к примеру, картера и головки блока цилиндров.
— 2. Поршень, являющийся пустотелым стаканом из металла. На его верхней части расположены «канавки» для поршневых колец.
— 3. Поршневые кольца. Кольца, расположенные внизу, называются маслосъемными, а верхние – компрессионные. Верхние кольца обеспечивают высокий уровень сжатия или компрессию смеси топлива и воздуха. Кольца используются для обеспечения герметичности камеры сгорания, а также в качестве уплотнителей, предотвращающих попадание масла в камеру сгорания.
— 4. Кривошипно-шатунный механизм. Отвечает за передачу возвратно-поступательной энергии поршневого движения на коленчатый вал двигателя.
— Многие автолюбители не знают, что на самом деле принцип работы ДВС является достаточно несложным. Сначала топливо попадает из форсунок в камеру сгорания, где оно смешивается с воздухом. Затем свеча зажигания выдает искру, которая вызывает воспламенение топливно-воздушной смеси, из-за чего она взрывается. Газы, которые формируются в результате этого, двигают поршень вниз, в процессе чего он передает соответствующее движение коленчатому валу. Коленвал начинает вращать трансмиссию. После этого набор специальных шестерён осуществляет передачу движения на колеса передней или задней оси (в зависимости от привода, может и на все четыре).
Именно так работает двигатель автомобиля. Теперь вас не смогут обмануть недобросовестные специалисты, которые возьмутся за ремонт силового агрегата вашей машины.
Устройство двигателя автомобиля
Рассмотрим устройство двигателя автомобиля и его базовые части: блок, цилиндр, поршень, поршневые кольца и шатун.
Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения.
Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.
Базовые части двигателя
Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.
Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.
Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.
Цилиндр
Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.
Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:
- Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
- Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
- Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.
Поршень, поршневые кольца и шатун
Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.
В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.
Среди задач поршня:
- Оказание силового воздействия на шатун.
- Отвод тепла от камеры сгорания.
- Герметизация камеры сгорания.
Коленчатый вал
Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.
Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.
На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).
Несколько важных терминов, касающихся устройства двигателя автомобиля
Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.
Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.
На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии. Источник: Ford.
Автомобильные двигатели
Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.
Автопром выпускает машины с 2-; 3-; 4-; 5-; 6; 8-; 10- и 12-цилиндровыми двигателями.
Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.
Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности.
Циклы двигателя
Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом.
Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания.
Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.
Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.
1. Такт впуска (всасывания). Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.
2. Такт сжатия. Шатун толкает поршень. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.
3. Такт рабочего хода. Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.
4. Такт выпуска отработавших газов. Поршень движется снизу вверх. Отработавшие газы выходят из цилиндра через выпускной клапан.
Устройство двигателя автомобиля устроено так, что четыре такта повторяются циклично. Посредством маховика механическая энергия превращается во вращательное движение коленвала.
Обратите внимание на нашу программу для специалистов автосервиса Диагностика, обслуживание и ремонт автомобилей. Она актуальна для обучения мастеров по ремонту и обслуживанию автомобилей, а также специалистов, которые будут заниматься техническим обслуживанием и ремонтом двигателей, систем и агрегатов.
Являясь интегратором LMS Sensys, оперативно решим проблемы не просто с запуском отдельной программы, но и внедрением учебного портала. Обратите внимание, что мы ценим время каждого нашего клиента, и поэтому понимаем, насколько важна ценность и возможность использования LMS cразу в качестве учебного портала.