Какие продукты образуются при горении органических веществ
Перейти к содержимому

Какие продукты образуются при горении органических веществ

  • автор:

2.3. Продукты сгорания. Дым и его характеристики

Продуктами сгорания называются газообразные, жидкие и твердые вещества, образующиеся в результате горения веществ в воздухе.

Состав их зависит от состава горящего вещества и условий его горения. На пожарах чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят углерод, водород, кислород, сера и азот. В зависимости от условий их горения могут образовываться продукты полного и неполного сгорания. К продуктам полного сгорания относятся углекислый газ , сернистый газ, пары воды, азот (при сгорании азотсодержащих соединений). Все они не способны гореть и не поддерживают горение большинства горючих веществ.

К продуктам неполного сгорания относятся окись углерода,сажа и продукты термоокислительного разложения.

Реже на пожарах горят неорганические вещества, такие как фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами их сгорания являются твердые вещества. Одни из них (Р 2 О 5 , МgО, Na 2 0) в продуктах сгорания мелко диспергированы и поднимаются в воздух в виде плотного дыма, другие (А1 2 О 3 , ТiO 2 ) впроцессе горения находятся в расплавленном состоянии.

Продукты сгорания многих органических и неорганических веществ содержат взвешенные твердые частицы (сажа, окислы, солии др.). Такая дисперсная система называется дымом.

Дым — это дисперсная система из продуктов горения и воздуха, состоящая из газов, паров и раскаленных частиц.

Дым представляет собой пример аэрозолядисперсной системы, состоящей из мельчайших твердых частиц (дисперсной фазы), взвешенных в дисперсионной газообразной среде (продуктах сгорания илисмеси их с воздухом, или в чистом воздухе). Размер частиц дисперсной фазы дыма колеблется в пределах 10 -5 и 10 -8 м.

Дым, состоящий из мелкодисперсных частиц, образуется в результате неполного сгорания. Он образуется как при беспламенном, так и при пламенном горении, хотя характер частиц и формы их образования весьма различны. Дым при тлении аналогичен дыму, который получается, когда любой углеродсодержащий материал нагревается до температур, при которых происходит химическое разложение и эволюция летучих продуктов горения. Фракции с большим молекулярным весом конденсируются по мере их перемешивания с холодным воздухом, что приводит к образованию тумана, состоящего из мельчайших капель смолы и высококипящих жидкостей. Эти капли стремятся в условиях спокойного воздуха слипаться, образуя мелкие частицы со средним диаметром порядка одного микрона, и осаждаются на поверхностях, образуя маслянистый остаток.

По своему характеру дым при пламенном сгорании материалов отличается от дыма при тлении. Он состоит почти целиком из твердых частиц. В то время как небольшая часть этих частиц может быть образована при абляции твердого материала в условиях воздействия на этот материал мощного теплового потока, большая часть частиц образуется в газовой фазе в результате неполного сгорания и высокотемпературных реакций пиролиза при низких концентрациях кислорода. Следует заметить, что дым, состоящий из твердых частиц, может образоваться даже, если исходным горючим материалом является газ или жидкость.

Дымы обоих типов являются возгораемыми и могут образовывать воспламеняемую атмосферу. При поджигании такой атмосферы может произойти взрыв.

Концентрацию твердых частиц в дыме выражают в кг/м 3 или количеством частиц в единице объема (в 1 м 3 ). Весовая концентрация дисперсной фазы в дыме, образующейся на пожарах, колеблется в широких пределах и составляет обычно от десятых долей до (6-7) 10 -3 кг/м 3 , что соответствует содержанию в 1 10 -6 м 3 (1 см 3 ) дыма нескольких миллионов твердых частиц. Так, на пожаре при горении древесины и хлопчатобумажной ткани концентрация твердых частиц в дыме в разных местах помещения составляла от 0,1 10 -4 до 6,5 10 -3 кг/м 3 .

Частицы, составляющие дым, подвергаются воздействию двух противоположно направленных сил: силы тяжести, которая увлекает твердые частицы вниз и ведет к их оседанию, и силы аэродинамического сопротивления. Твердые частицы дисперсной фазы дыма с радиусом менее 1 10 -5 м при падении быстро достигают постоянной скорости, при которой аэродинамическое сопротивление, действующее на частицу, становится равным силе тяжести, действующей на частицу.

Если размер частицы дисперсной фазы соизмерим со средней длиной свободного пробега молекул дисперсионной среды дыма, то удары молекул газа о поверхность частицы приводят к броуновскому движению, которое накладывается на процесс оседания частиц. Следовательно, броуновское движение придает кинетическую устойчивость частицам дисперсной фазы.

Кинетической устойчивостью называется способность дисперсных частиц удерживаться по взвешенном состоянии, не оседая и распределяясь в пространстве (по высоте) по определенному закону.

Решающим условием кинетической устойчивости дисперсной фазы дыма является степень ее дисперсности. Чем выше степень дисперсности фазы, тем больше сказывается броуновское движение. Следовательно, тем выше кинетическая устойчивость.

Экспериментальные данные свидетельствуют, что скорость оседания частиц уменьшается с уменьшением радиуса частиц, а скорость броуновского движения возрастает. Расчеты, даже без учета броуновского движения, показывают, что частицы с радиусом не выше 1 10 -5 м оседают медленно. Так, при радиусе частицы 1 10 -7 м и плотности дисперсной фазы 1 10 3 кг/м 3 скорость оседания будет равна:

υ к ≈ 1 10 -6 м/с. (2.13)

Таким образом, за 3 ч частица пройдет путь, равный приблизительно 1 10 -2 м (1 см). Следовательно, перемещение облака дыма восновном определяется ветром, а при его отсутствии — конвективными потоками в атмосфере, а не воздействием силы тяжести.

Дым как дисперсная система проявляет, кроме того, и агрегативную

Под агрегативной устойчивостью дисперсных систем понимается способность твердых частиц дисперсной фазы удерживать определенную степень дисперсности этой фазы путем сопротивления частиц к слипанию.

Эта устойчивость возникает за счет имеющегося на частицах одноименного электрического заряда или пленки адсорбированного газа. Приобрести электрический заряд частицы дисперсной фазы дыма могут при трении о дисперсионную газовую среду либо за счет адсорбции, возникающих при горении ионов.

Дым, образующийся при пожарах, особенно в закрытых помещениях, затрудняет действие пожарных подразделений. Во время организации тушения пожара принимают меры по устранению устойчивости дыма. Для этого используютаппараты, принудительно создающие поток дыма. Во время движения дымового облака столкновение частиц приводит к ихслипанию (коагуляции), что ведет к увеличению размера частиц, а, следовательно, к быстрому выделению их из дисперсионной среды и рассеиванию дыма.

На движение дыма в условиях пожара влияют следующие факторы: 1. Воздействие ветра. Ветер создает избыточное давление и с обрат-

ной стороны сооружения – разрежение. Его сила превосходит другие, возникающие на пожаре естественные явления. Ветер может изменить продолжительность пожара. Он может дуть в разных направлениях на различных уровнях высотного здания, особенно в местах скопления газов, способствующих проявлению «каньон эффекта». Действие ветра усиливается при наличии открытых проемов в здании. Следует особо отметить, что особенности движения воздушного потока, создаваемого ветром на пожаре, могут не соответствовать информации, сообщаемой ближайшей метеорологической станцией.

2. Эффект дымовой трубы. Эффект этот создается в результате различия

в температурах внутри и снаружи здания. Чем больше это различие, тем больше эффект дымовой трубы. Создающееся по этой причине движение воздуха с нижнего до верхнего этажа здания, благодаря имеющимся отверстиям, может сигнализировать также о начавшемся в нижних этажах пожаре по присутствию газообразных продуктов разложении примешивающихся к воздушному потоку.

3. Действие системы кондиционирования воздуха и вентиляции. Должно учитываться возможное влияние этой системы на развитие пожара.

4. Действие дымоудаляющего оборудования, которое может устанавливаться в зданиях для вентиляции площади возможного пожара.

5. Влияние открытых проемов в здании. Особенно большие проемы могут разрывать действие эффекта дымовой трубы, усиливать влияние ветра и препятствовать операциям механического оборудования по дымоудалению. В связи с этим важной информацией для исследователя развития пожара является знание, когда и каким путем образовались открытые проемы.

6. Влияние атмосферных условий. Падение температуры, наблюдаемое в атмосфере по высоте, способствует движению дыма вверх и удалению от места пожара. Наличие слоя воздуха, более теплого по сравнению с нижележащим, создает условия, при которых такой слой (инверсионный слой) может действовать как крыша для поднимающегося дыма. В высотных домах по-

следний может проникать в инверсионный слой, что служит причиной значительных различий в местонахождении дыма выше и ниже такого слоя.

Присутствие твердой дисперсной фазы обусловливает непрозрачность дыма. Степень пониженияпрозрачности зависит от концентрации, размера и природы частиц дисперсной фазы. Частицы дыма способны как поглощать свет, так и рассеивать его. В том случае, когда размер частиц дыма значительно меньше длиныволны проходящегочерез него света, интенсивность рассеянного света быстро растет с увеличением размера частиц дыма.

Задымление на пожаре резко ухудшает видимость, что значительно затрудняетдействия пожарных подразделенийиосложняет обстановку тушения пожара. В связи с этим большой интерес представляет оценкаплотности дыма напожарах.

Под плотностью дыма D д понимают отношение интенсивности света п , прошедшего через слой дыма, к интенсивности падающего света о .

D д = п / о =ехр(-КGl сл )

где К — коэффициент поглощения; G — весовая концентрация дыма, кг/м 3 ; l сл — толщина слоя дыма, м.

Один из основных параметров, характеризующих обстановку на пожаре — интенсивность или плотность задымления.

Интенсивность или плотность задымления, z [г/м 3 ], [м] — это пара-

метры пожара, характеризующиеся ухудшением видимости и степенью токсичности в зоне задымления.

Ухудшение видимости при задымлении определяется оптической плотностью дыма. Она оценивается по толщине слоя дыма, через которую не виден свет эталонной лампы (мощностью 21 Вт) или по количеству твердых частиц, содержащихся в единице объема.

В зависимости от плотности задымления дым бывает оптически плотный, средней плотности, оптически слабый.

г. твердой фазы/м 3

освещаемых лампой (21 Вт), м

Под дымообразованием на пожаре понимают количество дыма, м 3 /с,

выделяемого со всей площади пожара. Оно может быть определено из соотношения:

Vd = ϕυ m V пг S п T

где ϕ — коэффициент пропорциональности; ν m – массовая скорость выгорания;

V пг – объем продуктов горения, образовавшихся при сжигании одного килограмма горючего, м 3 /кг;

S п – площадь пожара, м 2 ;

T d и T o – температура дыма и окружающей среды (соответственно), К.

Коэффициент дымообразования (D m )- (только для ТГМ) показатель,

характеризующий оптическую плотность дыма, образующегося при пламенном горении или термоокислительной деструкции (тлении) определенного количества твердого вещества (материала) в условиях специальных испыта-

ний (ГОСТ 12.1.044-89).

Различают три группы материалов:

— с малой дымообразующей способностью — D m до 50 м 2 кг -1 включит.;

— с умеренной дымообразующей способностью — D m свыше 50 до 500 м 2 кг -1 включит.;

— с высокой дымообразующей способностью — D m свыше 500 м 2 кг -1 . Коэффициент дымообразования (D m ) в м 2 кг -1 вычисляют по формуле

(п. 4.18. ГОСТ 12.1.044-89):

где V – вместимость камеры измерения, м 3 ;

L – длина пути луча света в задымленной среде, м; m – масса образца, кг;

Т о , Т min – соответственно значения начального и конечного светопропускания, %.

Коэффициент дымообразования используют для классификации материалов по дымообразующей способности. Этот показатель можно использовать также в расчетах систем противодымной защиты объектов.

Примеры дымообразующей способности строительных материалов при тлении (горении), м 3 /кг:

Древесное волокно (береза, осина) – 62 (20); Декоративный бумажно-слоистый пластик – 75 (6); Фанера марки ФСФ – 140 (30); ДВП, облицованная пластиком – 170 (25).

В большинстве случаев при пламенном горении выделяется меньше дыма, чем при тлении.

В составе дисперсионной среды дыма, образующегосяна пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительногоразложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

Состав продуктов термоокислительного разложения зависит отхимической природы горючих веществ, температуры и условийконтакта с окислителем (в частности,- от коэффициента избыткавоздуха). Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молеку-

лах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, окислы азота и другие соединения.

Концентрация продуктов термоокислительного разложения в дыме одних и тех же горючих веществ непостоянна и во многом зависит от условий горения. В связи с этим концентрацию их в дыме определяют опытным путем.

Большинство продуктов термоокислительного разложения, так же как и продукты неполного сгорания, способны гореть. На пожарах при достаточном притоке воздуха к очагу горения эти вещества в дыме смешаны с продуктами полного сгорания и концентрация их невелика, поэтому горючей смеси они образовать не могут. На пожарах в зданиях при недостаточном притоке воздуха к очагу горения или при тлении твердых горючих веществ концентрация продуктов неполного сгорания и термоокислительного разложения в дыме значительно увеличивается, а продуктов полного сгорания — уменьшается. Это ведет к образованию дыма, способного гореть при условии притока к нему свежего воздуха и даже создавать взрывоопасную газовую смесь. В практике тушения пожаров были случаи, когда после открывания закрытых помещений, где происходил пожар, наблюдался взрыв. Взрывоопасная смесь возникала в результате поступленияв помещение воздуха и смешения его с дымом, содержащим большое количество продуктов неполного сгорания и термоокислительного разложения.

Входящие в состав дыма углекислотыи продукты неполного сгорания и термоокислительного разложения представляют опасность для человека.Основная составная часть дымауглекислый газ — в малых концентрациях не представляет большой опасности: его 1,5%-ную концентрацию в воздухе чело-

век переносит без вреда для организма при многочасовом воздействии. При концентрации 3-4,5% этот газ становится опасным для жизни при получасовом вдыхании, а концентрация 8-10% вызывает быструю потерю сознания и смерть.

Другой продукт окисления углерода — окись углерода — присутствует не в каждом дыме, а только при горении органических веществ, особенно, когда горение протекает при недостатке воздуха. Окись углерода — отравляющее вещество. Вдыхание воздуха, содержащего 0,4% окиси углерода в течение 300 с смертельно. На пожарах в помещениях концентрации окиси углерода в дыме могут превышать указанную величину, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

В последние десятилетия наблюдается резкое расширение производства и использования новых химических материалов в промышленности, строительстве и быту (различные полимерные материалы: пластмассы, декоративные пластики и др.). В дыме этих продуктов могут присутствовать хлористый водород, сероводород, окислы азота, синильная кислота и многие другие вредные для дыхания вещества.

Задания для самоконтроля

1. На какие группы подразделяются горючие вещества при расчетах материального

и теплового баланса?

2. Как связаны между собой коэффициент избытка воздуха и остаточное содержание кислорода в продуктах горения?

3. При каком значении коэффициента избытка воздуха смесь называется бедной по горючему?

4. В каком случае коэффициент избытка воздуха равен 1?

5. Как изменится объем продуктов горения при α = 2?

6. Какие значения принимает коэффициент избытка воздуха для открытых пожа-

7. Какой объем воздуха необходим для полного сгорания 15 кг бутиламина С 4 Н 9 NH 2 ? Температура – 5 0 С, давление 1,1 ат, коэффициент избытка воздуха 1,4.

8. Рассчитать объем воздуха, необходимый для полного сгорания 25 м 3 светильного газа, состоящего из 3 % диоксида углерода, 8 % оксида углерода, 35 % метана, 48 % водо-

рода, 3 % азота и 3 % этана. Условия нормальные, α = 1,5.

9. Какой объем воздуха необходим для полного сгорания 100 кг древесины, состоящей из 46 % углерода, 6 % водорода, 42 % кислорода, 2 % азота, 2 % воды и 2 % золы,

Продукты горения (сгорания)

Продукты горения – это вещества (газообразные, жидкие или твердые вещества) и соединения, образующиеся в результате сложного физико-химического процесса горения веществ (материалов).

Под продуктами горения чаще всего понимают дым, токсичные продукты горения, сажу и другие.

Продукты горения

Продукты горения сухой травы

Знание свойств и количества продуктов горения необходимо для расчета теплоты сгорания , температуры горения и других показателей, используемых для оценки пожаровзрывоопасности веществ (материалов), объектов с наличием этих веществ (материалов).

Состав

Состав их зависит от состава горящего вещества и условий его горения. В условиях пожара чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят главным образом углерод, водород, кислород и азот. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО2, Н2О, N2. При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

Продукты сгорания называют влажными, если при расчете их состава учитывают содержание паров воды, и сухими, если содержание паров воды не входит в расчетные формулы.

Реже во время пожара горят неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами сгорания их в большинстве случаев являются твердые вещества, например Р2О5, Na2O2, CaO, MgO. Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху равна 1,52. Плотность углекислого газа при температуре Т = 0 ° С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg) равна 1,96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1,29 кг/м 3 ). Углекислый газ хорошо растворим в воде (при Т = 15 °С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1,5 % безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4,5 %, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 °С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 °С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность равна 0,97. Плотность угарного газа при Т = 0 °С и р = 760 мм Hg составляет 1,25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0,4 % смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Всем известная вода – Н2О – также выделяется во время горения виде газа – как пар. Вода является продуктом горения газа метана – СН4. Вообще, вода и углекислота в основном выделяются при полном сгорании всех органических веществ.

Цианистый водород

Цианистый калий – сильнейший яд – соль синильной кислоты, также известной как цианистый водород – HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа. Синильная кислота очень ядовита, даже небольшая – 0,01 процент – концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Но синильной кислоте присуща одна «изюминка» – отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только средствами индивидуальной защиты органов дыхания и зрения не получится.

Акролеин

Пропеналь, акролеин, акрилальдегид – все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит. При попадании жидкости или ее паров на слизистые, особенно в глаза, вызывает сильное раздражение. Пропеналь является высокореакционным соединением, и это объясняет его высокую токсичность.

Формальдегид

Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. Это токсичный, бесцветный газ с резким запахом.

Азотсодержащие вещества

Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот – N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды – газы, имеют бурый цвет и чрезвычайно токсичны.

Сернистый газ

Сернистый газ (SO2) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа равна 2,25. Плотность этого газа при Т = 0 °С и р = 760 мм Hg составляет 2,9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 °С в одном литре воды растворяется восемьдесят литров SO2, а при Т = 20 °С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет от 10 −4 до 10 −6 см (от 1 до 0,01 мкм). Отметим, что 1 мкм (микрон) равен 10 −6 м или 10 −4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO2, CO, N2, SO2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

В составе дыма, образующегося на пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

Состав продуктов термоокислительного разложения зависит от природы горючих веществ, температуры и условий контакта с окислителем. Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молекулах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, оксиды азота и другие соединения. Так, в дыме при горении капрона содержится цианистый водород, при горении линолеума «Релин» – сероводород, диоксид серы, при горении органического стекла – оксиды азота. Продукты неполного сгорания и термоокислительного разложения в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

Пепел, зола, копоть, сажа, уголь

Копоть, или сажа – остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом. Зола, или пепел – мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения. При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу. А уголь – это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть. Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ. Перечислить их всех нереально, да и не нужно, потому что другие вещества выделяются в ничтожно малых количествах, и только при окислении определенных соединений.

Классификация

Большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным ознакомить вас со следующим термином:

Классификация опасности веществ по степени воздействия на организм – это установление (ранжирование) уровней опасности веществ по их поражающему и повреждающему воздействию на организм человека и (или) животного. Более подробно о данной классификации читайте в материале по ссылке >>

Также ознакомьтесь с познавательным материалом по теме:

Формулы для расчета объема

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Индивидуальное химическое соединение

В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле:

Расчет объема продуктов полного сгорания

Vп.с. – объем влажных продуктов сгорания, м 3 /кг; Число киломолей – число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравнении реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

Например, чтобы определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях, составляем уравнение реакции горения ацетона в воздухе:

Определяем объем сухих продуктов сгорания ацетона:

Объем сухих продуктов сгорания ацетона

Объем влажных продуктов сгорания 1 м 3 горючего вещества (газа) можно рассчитать по формуле:

Объем влажных продуктов сгорания

Vп.с. – объем влажных продуктов сгорания 1 м 3 горючего газа, м 3 /м 3 ; Число киломолей – число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Сложная смесь химических соединений

Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид:

При сгорании 1 кг углерода получается 22,4 / 12 = 1,86 м 3 СО2 и 22,4 × 3,76/12 = 7,0 м 3 N2.

Аналогично определяют объем (в м 3 ) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

СО2 N2 Н2О SO2
Углерод 1,86 7,00
Водород 21,00 11,2
Сера 2,63 0,7

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.

Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 . В воздухе при 0 °С и давлении 101325 Па на 1 кг кислорода приходится 3,76 × 22,4 / 32 = 2,63 м 3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Например, чтобы определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N, 2,5 % S, W = 3,8 %, A = 11,0 %.

Объем продуктов сгорания будет следующий, м 3 :

Состав продуктов сгорания СО2 Н2О N2 SO2
Углерод 1,86 × 0,758 = 1,4 7 × 0,758 = 5,306
Водород 11,2 × 0,038 = 0,425 21 × 0,038 = 0,798
Сера 2,63 × 0,025 = 0,658 0,7 × 0,025 = 0,017
Азот в горючем веществе 0,8 × 0,011 = 0,0088
Влага в горючем веществе 1,24 × 0,03 = 0,037
Сумма 1,4 0,462 6,7708 – 0,0736 = 6,6972 0,017

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м 3 . Итог указывает состав продуктов сгорания каменного угля: объем влажных продуктов сгорания 1 кг каменного угля равен:

Vп.с. = 1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м 3 /кг.

Смесь газов

Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

Согласно этому уравнению, при сгорании 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота. Аналогично определяют объем (в м 3 ) продуктов сгорания 1 м 3 различных газов:

СО2 Н2О N2 SO2
Водород 1,0 1,88
Окись углерода 1,0 1,88
Сероводород 1,0 5,64 1,0
Метан 1,0 2,0 7,52
Ацетилен 2,0 1,0 9,54
Этилен 2,0 2,0 11,28

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14-16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

СО СО2 О2
В подвалах 0,15-0,5 0,8-8,5 10,6-19
На чердаках 0,1-0,6 0,3-4,0 16,0-20,2

По содержанию кислорода в продуктах сгорания на пожарах можно судить о коэффициенте избытка воздуха, при котором происходило горение.

Действие на организм человека

Степень токсичности веществ связана с их физической и химической природой. Взаимодействуя с организмом, продукты горения вызывают патологические синдромы.

Международная классификация болезней десятого пересмотра МКБ-10 определяет отравление продуктами горения кодом Т59 – «Токсическое действие других газов, дымов и паров».

По механизму действия на человека отравляющие компоненты в составе дыма делятся на пять групп.

  1. Вещества, которые вызывают поражение кожного покрова и слизистой оболочки. Симптомы такого отравления продуктами горения – зуд, жжение кожи и её воспаление, боль в области глаз, век, слезотечение, кашель. Примеры – пары дёгтя, сернистый газ, формальдегид.
  2. Продукты горения, которые вызывают острые ингаляционные отравления. Пострадавшие жалуются на одышку, кашель. При осмотре обращает на себя внимание частое дыхание, синюшность. При высокой концентрации токсичного газа может произойти остановка дыхания. Так, признаки отравления продуктами горения ПВХ могут проявиться через несколько часов. Ингаляционные отравления вызывает хлор, аммиак, оксид азота.
  3. Продукты горения с образованием токсичных веществ, которых называют «ядами крови». Связывая гемоглобин, они нарушают доступ кислорода к тканям и запускают патологические реакции, охватывающие весь организм. Примеры – угарный газ, диоксид азота.
  4. Продукты горения, для которых органом-мишенью является нервная система. Это бензол, сероводород.
  5. Ферментные яды, которые воздействуют на тканевое дыхание, блокируя процессы активации кислорода. Это сероводород, синильная кислота.

Многие токсины, образующие в продуктах горения «универсальны», так как вызывают поражение сразу нескольких систем организма.

Первая помощь при отравлении

Симптомы интоксикации разными веществами могут отличаться, но принципы оказания первой помощи всегда одинаковые.

Большинство ядов поступает через дыхательные пути. Первое, что необходимо сделать при отравлении – прекратить поступление продуктов горения в организм. Для этого необходимо:

  • соблюдая безопасность и если имеется такая возможность прекратить поступление токсичного вещества – газа, дыма;
  • проветрить помещение или иной объем где находится пострадавший;
  • снять загрязнённую одежду;
  • при отсутствии противопоказаний перенести пострадавшего в безопасное место.

Острая интоксикация требуют оказания экстренной помощи. Действия при отравлении продуктами горения, следующие:

  • вызвать «скорую помощь»;
  • при задымлении предусмотреть способы защиты органов дыхания от продуктов горения;
  • если есть симптомы раздражения – промыть глаза, полость рта, носа;
  • при отсутствии сознания придать пострадавшему горизонтальное положение и обеспечить проходимость дыхательных путей;
  • до приезда медицинских специалистов наблюдать за сознанием, дыханием, частотой сердечных сокращений, артериальным давлением;
  • если есть признаки терминального состояния, то приступить к сердечно-лёгочной реанимации.

Некоторые ингаляционные отравления продуктами горения имеют период мнимого благополучия. Даже при отсутствии патологических симптомов, стоит внимательно следить за состоянием тех, кто может быть отравлен. При первых же признаках неблагополучия необходимо вызывать соответствующих специалистов.

Отравление продуктами горения у детей развивается быстрее, чем у взрослых. Это объясняется более высоким уровнем кислородного обмена. У малышей появляются жалобы на головную боль, сонливость, слезотечение, тошноту. При осмотре заметны изменения цвета кожи, учащение и затруднение дыхания, нарушения координации. Принципы оказания первой помощи для детей те же, что и для взрослых. При отсутствии специализированной медицинской помощи, пострадавшему ребенку угрожают необратимые изменения центральной нервной системы.

Источник: Пожаровзрывобезопасность веществ и материалов и средства их тушения: Справочник. Баратов А.Н., Корольченко А.Я. –М., 1990.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH — Р Р Р Р Р М Н М Н Н Н Н Н Н Н Н Н Н Н
F — Р М Р Р Р М Н Н М М Н Н Н Р Р Р Р Р Н Р Р
Cl — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р М Р Р
Br — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н М М Р Р
I — Р Р Р Р Р Р Р Р Р Р ? Р ? Р Р Р Р Н Н Н М ?
S 2- М Р Р Р Р Н Н Н Н Н Н Н Н Н Н Н
HS — Р Р Р Р Р Р Р Р Р ? ? ? ? ? Н ? ? ? ? ? ? ?
SO3 2- Р Р Р Р Р Н Н М Н ? Н ? Н Н ? М М Н ? ?
HSO3 Р ? Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? ? ? ?
SO4 2- Р Р Р Р Р Н М Р Н Р Р Р Р Р Р Р Р М Н Р Р
HSO4 Р Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? Н ? ?
NO3 Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 Р Р Р Р Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ?
PO4 3- Р Н Р Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
CO3 2- Р Р Р Р Р Н Н Н Н ? ? Н ? Н Н Н Н Н ? Н ? Н
CH3COO — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
SiO3 2- Н Н Р Р ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? Н ? ?
Растворимые (>1%) Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Какие продукты образуются при горении органических веществ

1) В результате окисления молекулярным кислородом органических веществ в клетке, как и в результате горения, образуются углекислый газ и вода
2) При горении вся энергия выделяется в виде тепла или потока лучистой энергии (света); при окислении лишь часть энергии выделяется в виде тепла, а часть запасается в виде энергии макроэргических связей молекулы АТФ
3) В разных структурах организма и клетки биологическое окисление происходит ступенчато, при участии ферментов; при горении ступенчатого окисления не происходит (вещества сгорают до углекислого газа и воды), ферменты в процессе горения также участия не принимают

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *