1.2. Виды горения
Горение— быстро протекающая химическая реакция (чаще всего окисление), сопровождающаяся выделением большого количества теплоты и обычно ярким свечением (пламенем).
Для горения необходимо наличие 3-х факторов:
окислителя (обычно О2, также Сl,F,Br,I,NOX)
источника загорания (т.е. начало импульса).
В зависимости от свойств и состава горючего вещества различают:
А. Гомогенное горение (одинаковый агрегатный состав, например, газы)
Б. Гетерогенное горение(например, твердое вещество и жидкость).
В зависимости от скорости распространения пламениразличают:
А. Дефлаграционное(свойственно пожарам)
Б. Взрывное100 м/с
В. Детонационное1000 м/с5000 м/с
В зависимости от условий образования горючей смеси:
Диффузионное горение— характеризуется тем, что образование горючей смеси происходит в процессе горения в результате диффузии кислорода в зону горения. Например, горение жидкости с открытой поверхности или газов, выходящих через неплотности оборудования
Дефлаграционное горение — это диффузионное горение.
Кинетическое горениесоответствует взрывному горению. В этом случае горючее вещество и кислород поступают в зону горения предварительно смешанными. Определяющим фактором является скорость химической реакции окисления между окислителем и горючем веществе, происходящей во фронте пламени. Если процесс кинетического горения происходит в замкнутом объеме, то давление в этом объеме повышается, температура продуктов горения увеличивается.
По соотношению горючего и окислителя выделяют:
А. Горение бедных горючих смесей(в субъекте — окислитель, горение лимитируется соединением горючего компонента).
Б. Горение богатых горючих смесей— соответственно наоборот — горючее лимитирует содержание окислителя (содержит горбчего выше стеклометрического соотношения компонентов).
Возникновение горения связано с обязательным самоускорением реакции. Существует 3 вида самоускорения:
тепловой: при условии аккумуляции теплоты в системе повышается температура, что приводит к ускорению химических реакций;
цепной: связан с катализом химических превращений промежуточными продуктами реакций, обладает особой химической активностью (активные центры). (т.е. химический процесс происходит не путем непосредственного взаимодействия исходных молекул, а с помощью осколков, образующихся при распаде этих молекул).
Реальные процессы горения обычно осуществляются по комбинированному цепочно-тепловому механизму.
1.3 Виды процесса возникновения горения
Вспышка— быстрое (практически мгновенное) сгорание горючих смесей, не сопровождающиеся образованием сжатых газов.
Возгорание-возникновение горения под воздействием источника зажигания (сttвоспламенения или самовозгорания)
Воспламенение— возгорание, сопровождающееся появлением пламени.
Самовозгорание— резкое увеличение скорости экзотермических реакций, приводящих к горению вещества (смеси) при отсутствии источника зажигания. Это может происходить и при температуре окружающей средытемпературы воспламенения. Такая возможность обусловлена склонностью веществ к окислению и условиями аккумуляции в них теплоты, выделяющейся при окислении. Таким образом, при самовозгорании имеется как бы внутренний импульс.
В зависимости от импульса процессы самовозгорания делятся на:
Тепловоесамовозгорание/самовоспламенение происходит в результате продолжительного действия незначительного источника тепла. При этом вещества разлагаются, адсорбируются и в результате действия окислительных процессов самовозгораются. Так приt100С к самовозгоранию склонны древесные опилки, ДВП, паркет.
Химическоесамовозгорание/самовоспламенение происходит от воздействия на вещества кислорода воздуха, воды или от взаимодействия веществ. (Пожары от самовозгорания промасленной ветоши, спецодежды, ваты, а иногда даже металлических стружек).
О склонности масла или жира к самовозгоранию можно судить по его йодному числу (количество I2, поглощенное 100 г испытываемого масла или жира).
Чем выше йодное число, тем ниже температура самовозгорания, тем опаснее вещество.
Микробиологическоесамовозгорание — при соответственной влажности и температуре в растительных продуктах при интенсификации жизнедеятельности организмов (образуется грибок — так называемый паутинный глет), которое вызывает повышение температуры.
(Для предотвращения — регулярный контроль температуры и влажности, ограничение влажности и температуры
Самовоспламенение— самовозгорание, сопровождающееся появлением пламени.
Взрыв— чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и сжатых газов, способных производить работу.
Детонация— передача теплоты от слоя к слою происходит за счет распространения ударной волны.
При оценке пожарной опасности веществ необходимо учитывать их агрегатное состояние.
Поскольку горение идет обычно в газовой среде, в качестве показателей пожарной безопасности (ПБ) необходимо учитывать условия, при которых образуется достаточное для горения количество газообразных продуктов.
Виды и режимы горения
Окислители – это вещества, атомы которых в химических превращениях принимают электроны. Среди простых веществ к ним относятся все галогены и кислород.
Наиболее распространенным в природе окислителем является кислород воздуха.
На реальных пожарах, горение в основном протекает в воздухе, однако во многих технологических процессах используется воздух, обогащенный кислородом, и даже чистый кислород (например металлургические производства, газовая сварка, резка и т.д.). С атмосферой, обогащенной кислородом можно встретиться в подводных и космических аппаратах, доменных процессах и т.п. Такие горючие системы имеют повышенную пожарную опасность. Это необходимо учитывать при разработке систем пожаротушения, пожарно-профилактических мероприятий и при пожарно-технической экспертизе пожаров.
Помимо кислорода воздуха и галогенов, окислителями в реакциях горения могут выступать и сложные вещества, например, соли кислородсодержащих кислот – нитраты, хлораты и т.п., применяемые в производстве порохов, боевых и промышленных взрывчатых веществ и различных пиротехнических составов.
Смесь горючего и окислителя в одинаковом агрегатном состоянии в определенных пропорциях и способную гореть (а горение возможно только при определенных их соотношениях), называют горючей средой.
Выделяют два вида горючих сред: однородную и неоднородную.
Однородной горючей средой называется предварительно перемешанная смесь горючего с окислителем, а, соответственно неоднородная горючая среда – когда горючее и окислитель не перемешаны.
Влияние на процесс горения большого числа факторов обусловливает многообразие видов и режимов горения. Так, в зависимости от агрегатного состояния компонентов горючей смеси горение может быть гомогенным и гетерогенным, от условий смешения компонентов – горением предварительно приготовленной смеси (кинетическое) и диффузионным, от газодинамических условий – ламинарным и турбулентным, и т.д.
Основными видами горения являются гомогенное и гетерогенное.
Гомогенное горение — это процесс взаимодействия горючего и
окислителя, находящихся в одинаковом агрегатном состоянии. Наиболее
широко распространено гомогенное горение газов и паров в воздухе.
Гетерогенное горение — это горение твердых горючих матери-
алов непосредственно на их поверхности. Характерной особенностью
гетерогенного горения является отсутствие пламени. Примерами его
являются горение антрацита, кокса, древесного угля, нелетучих металлов.
Беспламенное горение в ряде случаев называют тлением.
Как видно из определений, принципиальным отличием гомогенного горения от гетерогенного, является то, что в первом случае горючее и окислитель находятся в одном агрегатном состоянии, во втором – в разных.
При этом необходимо отметить, далеко не всегда горение твердых веществ и материалов является гетерогенным. Это объясняется механизмом горения твердых веществ.
Так, например, горение древесины в воздухе. Для того, чтобы зажечь ее, необходимо поднести какой-либо источник тепла, например пламя от спички или зажигалки, и подождать некоторое время. Возникает вопрос: почему она загорается не сразу? Это объясняется тем, что в начальный период, источник зажигания должен нагреть древесину до определенной температуры, при которой начинается процесс пиролиза, или иными словами термическое разложение. При этом, в результате разложения целлюлозы и других составляющих, начинают выделяться продукты их разложения – горючие газы – углеводороды. Очевидно, что чем больше нагрев, тем больше скорость разложения и, соответственно, скорость выделения горючих газов. И вот только тогда, когда скорость выделения ГГ будет достаточной для создания определенной их концентрации в воздухе, т.е. образования горючей среды, может возникнуть горение. При чем горение не древесины, а продуктов ее разложения – горючих газов. Именно по этому, горение древесины, в большинстве случаев – гомогенное горение, а не гетерогенное.
Вы можете возразить: древесина, в конце концов, начинает тлеть, а тление, как было сказано выше – это гетерогенное горение. Так и есть. Дело в том, что конечными продуктами разложения древесины являются в основном горючие газы и углистый остаток, так называемый кокс. Этот самый углистый остаток все вы видели и даже покупали для приготовления шашлыков. Эти угли примерно на 98% состоят из чистого углерода и не могут выделять ГГ. Угли горят уже в режиме гетерогенного горения, то есть тлеют.
Таким образом, древесина горит сначала в режиме гомогенного горения, затем, при температуре примерно 800°С пламенное горение переходит в тление, т.е. становится гетерогенным. Так же происходит и с другими твердыми веществами.
Как горят жидкости в воздухе? Механизм горения жидкостей заключается в том, что сначала происходит ее испарение, и именно пары образуют горючую смесь с воздухом. То есть в этом случае также происходит гомогенное горение. горит не жидкая фаза, а пары жидкости
Механизм горения металла такой же, как и жидкостей, за исключением того, что металлу необходимо сначала расплавиться и после этого нагреться до высокой температуры, чтобы скорость испарения была достаточной для образования горючей среды. Некоторые металлы горят на их поверхности.
В гомогенном горении выделяют два режима: кинетическое и диффузионное горение.
Кинетическое горение – это горение предварительно перемешанной горючей смеси, т.е. однородной смеси. Скорость горения определяется только кинетикой окислительно-восстановительной реакции.
Диффузионное горение – это горение неоднородной смеси, когда горючее и окислитель предварительно не перемешаны, т.е. неоднородной. В этом случае, смешивание горючего и окислителя происходит во фронте пламени за счет диффузии. Для неорганизованного горения характерен именно диффузионный режим горения, большинство горючих материалов на пожаре могут гореть только в этом режиме. Однородные смеси, конечно, могут образовываться и при реальном пожаре, однако их образование скорее предшествует пожару или обеспечивает начальную стадию развития.
Принципиальным отличием этих видов горения заключается в том, что в однородной смеси молекулы горючего и окислителя уже находятся в непосредственной близости и готовы вступить в химическое взаимодействие, при диффузионном же горении эти молекулы сначала должны приблизится друг к другу за счет диффузии, и только после этого вступить во взаимодействие.
Этим обуславливается различие в скорости протекания процесса горения.
Полное время горения tг, складывается из длительности физиче-
ских и химических процессов:
Кинетический режим горения характеризуется длительностью только химических процессов, т.е. tг» tх, поскольку в этом случае физических процессов подготовки (перемешивания) не требуется, т.е. tф» 0.
Диффузионный режим горения, наоборот, зависит в основном от
скорости подготовки однородной горючей смеси (грубо говоря сближения молекул), В этом случае tф >> tх, и поэтому последним можно пренебречь, т.е. длительность его определяется в основном скоростью протекания физических процессов.
Если tф» tх, т.е. они соизмеримы, то горение протекает в так
называемой промежуточной области.
Для примера, представьте себе две газовые горелки(рис. 1.1): в одной из них в сопле имеются отверстия для доступа воздуха (а), в другой их нет (б). В первом случае воздух будет засасываться инжекцией в сопло, где он перемешивается в горючим газом, таким образом, образуется однородная горючая смесь, которая сгорает на выходе из сопла в кинетическом режиме. Во втором случае (б), воздух перемешивается с горючим газом в процессе горения за счет диффузии, в этом случае – горение диффузионное.
Рис. 1.1 Пример кинетического (а) и диффузионного (б) горения
Другой пример: в помещении происходит утечка газа. Газ постепенно перемешивается с воздухом, образуя однородную горючую смесь. И в случае появления после этого источника зажигания, происходит взрыв. Это и есть горение в кинетическом режиме.
Аналогично при горении жидкостей, например бензина. Если его налить в открытую емкость и поджечь, будет происходить диффузионное горение. Если же поместить эту емкость в закрытое помещение и подождать некоторое время, бензин частично испарится, перемешается с воздухом и образует тем самым однородную горючую смесь. При внесении источника зажигания, как вам известно, произойдет взрыв, это – кинетическое горение.
В каком режиме протекает горение на реальных пожарах? Конечно в основном в диффузионном. В некоторых случаях пожар может начаться и с кинетического горения, как в приведенных примерах, однако после выгорания однородной смеси, что происходит очень быстро, горение продолжится уже в диффузионном режиме.
При диффузионном горении, в случае недостатка кислорода воздуха, например при пожарах в закрытых помещениях, возможно неполное сгорание горючего с образованием продуктов неполного сгорания таких как СО – угарный газ. Все продукты неполного сгорания очень токсичны и представляют большую опасность на пожаре. В большинстве случаев именно они являются виновниками гибели людей.
Итак, основными видами горения являются гомогенное и гетерогенное. Визуальное отличие этих режимов – наличие пламени.
Гомогенное горение может протекать в двух режимах: диффузионном и кинетическом. Визуально, их отличие заключается в скорости горения.
Следует отметить, что выделяют еще один вид горения – горение взрывчатых веществ. Взрывчатые вещества включают в свой состав горючее и окислитель в твердой фазе. Поскольку и горючее и окислитель находятся в одинаковом агрегатном состоянии, такое горение – гомогенное.
На реальных пожарах, в основном, происходит пламенное горение. Пламя, как известно, выделяют как один из опасных факторов пожара. Что же такое пламя и какие процессы в нем протекают?
Тление и горение: основные отличия
Многие люди часто путают понятия тления и горения, считая их однотипными процессами. Однако, это не совсем верно. Тение и горение — это два разных процесса, которые связаны между собой, но имеют ряд отличий.
Основное отличие между тлением и горением заключается в наличии или отсутствии пламени. При горении происходит окисление вещества с выделением тепла и света, а также возникновение пламени. В свою очередь, тление — это медленный окислительный процесс, который протекает без выделения света и тепла.
Помимо этого, тление и горение различаются скоростью процесса и температурой. Горение происходит очень быстро и при высоких температурах, в то время как тление — это медленный процесс, который протекает при более низких температурах.
Таким образом, тление и горение — это два сходных процесса, но при этом они имеют ряд отличий. Понимание различий между ними поможет более точно определить, что происходит с веществом в конкретной ситуации и каковы его последствия.
Процесс горения
Горение – это химический процесс окисления, при котором происходит энергетический выход в виде тепла и света. Горение возможно только в присутствии кислорода, который выступает в качестве окислителя.
В зависимости от вещества, которое горит, процесс горения может проходить по-разному. Например, при горении древесины в качестве топлива выделяются углекислый газ и водяной пар. Если же горит бензин, то кроме углекислого газа и водорода выделяются оксиды азота, которые являются вредными для окружающей среды.
Температура горения также может варьироваться в зависимости от вещества. Например, для начала горения бумаги достаточно температуры около 233 градусов Цельсия, а для горения алюминия – более 2000 градусов.
- Процесс горения может протекать самоподдерживающимся способом, если в нем участвует достаточно кислорода и топлива.
- Скорость горения зависит от температуры, концентрации кислорода, давления и других факторов.
- Горение может протекать как в закрытом, так и в открытом пространстве.
Важно отметить, что горение является очень опасным явлением, которое может вызвать пожары и серьезные повреждения. Поэтому необходимо следить за техническим состоянием электрических приборов, не оставлять горящие свечи без присмотра и не хранить легковоспламеняющиеся вещества вблизи источников тепла.
Химические реакции
Тление и горение
Тление и горение — это разные типы химических реакций, которые происходят при взаимодействии веществ с кислородом. Во время горения происходит выделение тепла и света, а также образование продуктов сгорания, что может привести к пожару. Тление же — это медленное окисление веществ, при котором происходит выделение тепла, но не происходит горения и не образуются продукты сгорания.
В химических реакциях важную роль играют реагенты, которые вступают в реакцию, и продукты, которые образуются после реакции. В некоторых случаях реакция может происходить самопроизвольно, без внешнего воздействия, а в других случаях необходимо приложить энергию для инициирования реакции.
- Активаторы — вещества, которые ускоряют реакцию.
- Ингибиторы — вещества, которые замедляют реакцию.
При химических реакциях могут происходить различные процессы, такие как окисление и восстановление веществ, образование кислот и щелочей, образование кристаллов и т.д. Они могут происходить в различных средах: воде, газе и в твёрдых телах.
Типы реакций | Пример |
---|---|
Выделение тепла | Горение бензина в двигателе |
Переход электронов | Электролиз воды |
Образование осадка | Реакция лимонной кислоты с кальцием |
Химические реакции — это основа жизни на Земле, так как они происходят во многих биологических процессах, включая дыхание, переваривание пищи и другие метаболические процессы. Понимание принципов химических реакций имеет огромное значение в научной и промышленной деятельности.
Отличия в температуре при тлении и горении
Тление и горение – это процессы окисления вещества, которые часто смешивают между собой. Однако, эти процессы имеют свои отличительные черты. Одна из них – это разница в температуре.
При тлении, температура вещества не превышает 400 градусов Цельсия. При этом, вещество выделяет энергию, но она нестабильна и прекращается при отсутствии источника тепла или кислорода.
В случае горения, температура возрастает значительно выше – до 1000 градусов Цельсия и выше. Горение сопровождается ярким светом и пламенем, а также выделяет большое количество тепла и дыма. Горение является продолжительным процессом и не прекращается до полного исчезновения исходного вещества.
В итоге, разница в температуре между тлением и горением позволяет различать эти процессы между собой и применять соответствующие меры предосторожности при работе с веществами, склонными к тлению или горению.
Сфера применения
Промышленность
Тление и горение играют важную роль в промышленности. Некоторые процессы требуют контроля тления для поддержания температуры в пределах определенного диапазона. Например, при производстве керамики и стекла, тление используется для обжига сырья. Горение же применяется в процессах сжигания топлива для получения энергии, а также в процессах синтеза химических веществ.
Безопасность
Изучение тления и горения необходимо для обеспечения безопасности в различных сферах. На пример, в автомобильной промышленности изучают взрывоопасность топлива и работают над созданием систем пожаротушения. Также различные инструменты и устройства должны быть изготовлены из материалов, которые не поддерживают горение, чтобы предотвратить пожары и другие аварии.
Исследования
Тление и горение также изучаются в научных исследованиях. Например, химики изучают процессы горения для создания новых материалов, открытия новых химических реакций и понимания воздействия катализаторов на синтез химических соединений. Медики изучают факторы, влияющие на тление и горение человеческой кожи, чтобы разработать новые методы лечения ожогов и других травм.
Тема 4. ВИДЫ ГОРЕНИЯ
По разным признакам и особенностям процессы горения можно разде-лить на следующие виды:
По агрегатному состоянию горючего вещества:
— горение жидкостей и плавящихся твердых веществ;
— горение неплавящихся твердых пылевидных и компактных веществ.
По фазовому составу компонентов:
Рекомендуемые материалы
— горение взрывчатых веществ.
По подготовленности горючей смеси:
— диффузионное горение (пожар);
— кинетическое горение (взрыв).
По динамике фронта пламени:
По характеру движения газов:
По степени сгорания горючего вещества:
По скорости распространения пламени:
Рассмотрим подробнее эти виды.
4.1. Горение газообразных, жидких и твердых веществ.
В зависимости от агрегатного состояния горючего вещества различают горение газов, жидкостей, пылевидных и компактных твердых веществ.
Согласно ГОСТ 12.1.044-89:
1. Газы – это вещества, критическая температура которых менее 50 о С. Ткр – это минимальная температура нагрева 1 моля вещества в закрытом со-суде, при котором оно полностью превращается в пар (см. § 2.3).
2. Жидкости – это вещества с температурой плавления (каплепадения) менее 50 о С (см. § 2.5).
3. Твердые вещества – это вещества с температурой плавления (капле-падения) более 50 0 С.
4. Пыли – это измельченные твердые вещества с размером частиц менее 0,85 мм.
Зона, в которой происходит химическая реакция в горючей смеси, т.е. горение, называется фронтом пламени.
Рассмотрим процессы горения в воздушной среде на примерах.
Горение газов в газовой горелке. Тут наблюдаются 3 зоны пламени (рис. 12.):
Рис. 12. Схема горения газа: 1 – прозрач-ный конус – это исходный нагревается газ (до температуры самовоспламенения); 2 – светящаяся зона фронта пламени; 3 – про-дукты сгорания (бывают почти невидимы при полном сгорании газов и, особенно при горении водорода, когда не образуется са-жа).
Ширина фронта пламени в газовых смесях составляет десятки доли миллиметра.
Горение жидкостей в открытом сосуде. При горении в открытом со-суде имеются 4 зоны (рис. 13):
Рис. 13. Горение жидкости: 1 – жид-кость; 2 – пары жидкости (темные участки); 3 – фронт пламени; 4 – про-дукты горения (дым).
Ширина фронта пламени в этом случае больше, т.е. реакция протекает медленнее.
Горение плавящихся твердых веществ. Рассмотрим горение свечи. В данном случае наблюдается 6 зон (рис. 14):
Рис. 14. Горение свечи: 1 – твердый воск; 2 – расплав-ленный (жидкий) воск; 3 – темный прозрачный слой паров; 4 – фронт пламени; 5 – продукты горения (дым); 6 – фитиль.
Горящий фитиль служит для стабилизации горения. В него впитывается жидкость, поднимается по нему, испаряется и горит. Ширина фронта пламе-ни увеличивается, что увеличивает площадь светимости, так как используют-ся более сложные углеводороды, которые, испаряясь, распадаются, а потом уже вступают в реакцию.
Горение неплавящихся твердых веществ. Этот вид горения рассмот-рим на примере горения спички и сигареты (рис. 15 и 16).
Здесь также имеется 5 участков:
Рис. 15. Горение спички: 1 – свежая древесина; 2 – обуг-ленная древесина; 3 – газы (газифицированные или испа-рившиеся летучие вещества) — это темноватая прозрачная зона; 4 – фронт пламени; 5 – продукты сгорания (дым).
Видно, что обгоревший участок спички намного тоньше и имеет чер-ный цвет. Это значит, что часть спички обуглилась, т.е. осталась нелетучая часть, а летучая часть испарилась и сгорела. Скорость горения угля значи-тельно медленнее, чем газов, поэтому он не успевает полностью выгореть.
Рис.16. Горение сигареты: 1 – исходная табач-ная смесь; 2 – тлеющий участок без фронта пламени; 3 – дым, т.е. продукт сгоревших час-тиц; 4 – втягиваемый в легкие дым, который представляет собой в основном газифицирован-ные продукты; 5 – смола, сконденсировавшаяся на фильтре.
Беспламенное термоокислительное разложение вещества называется тлением. Оно возникает при недостаточной диффузии кислорода в зону го-рения и может протекать даже при очень малом его количестве (1-2%). Дым имеет сизый, а не черный цвет. Значит в нем больше газифицированных, а не сгоревших веществ.
Поверхность пепла почти белая. Значит, при достаточном поступлении кислорода происходит полное сгорание. Но внутри и на границе горящего слоя со свежими – черное вещество. Это свидетельствует о неполном сгора-нии обугленных частиц. Кстати, на фильтре конденсируются пары улету-чившихся смолистых веществ.
Подобный вид горения наблюдается при горении кокса, т.е. угля, из ко-торого удалены летучие вещества (газы, смолы), или графита.
Таким образом, процесс горения газов, жидкостей и большинства твер-дых веществ протекает в газообразном виде и сопровождается пламенем. Не-которые твердые вещества, в том числе имеющие склонность к самовозгора-нию, горят в виде тления на поверхности и внутри материала.
Горение пылевидных веществ. Горение слоя пыли происходит так же, как и в компактном состоянии, только скорость горения возрастает из-за увеличения поверхности контакта с воздухом.
Горение пылевидных веществ в виде аэровзвеси (пылевого облака) мо-жет протекать в виде искр, т.е. горения отдельных частиц, в случае малого содержания летучих веществ, не способных при испарении образовать доста-точное количество газов для единого фронта пламени.
Если образуется достаточное количество газифицированных летучих веществ, то возникает пламенное горение.
Горение взрывчатых веществ. К данному виду относится горение взрывчатки и пороха, так называемых конденсированных веществ, в которых уже находится химически или механически связанные горючее и окислитель. Например: у тринитротолуола (тротила) C7H5O6N3×C7H5×3NO2 окислителями служат O2 и NO2; в составе пороха – сера, селитра, уголь; в составе само-дельной взрывчатки алюминиевая пудра и аммиачная селитра, связующее – соляровое масло.
4.2. Гомогенное и гетерогенное горение.
Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:
1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).
2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.
Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.
Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.
Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.
4.3. Диффузионное и кинетическое горение.
По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение.
Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.
Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза.
Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер.
Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение.
Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):
Рис. 17. Модель горения
— прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва;
— пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества;
— предпламенной в газовой фазе, в которой образуется смесь с окисли-телем;
— пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения;
Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения.
В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным.
Структура пламени диффузионного горения состоит из трех зон (рис.18):
В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 500 0 С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.
Рис. 18. Структура пламени.
Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):
В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:
Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.
Все виды диффузионного горения присущи пожарам.
Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопровод-ности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.
В данном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).
Рис. 19. Схема распространения пламени в горючей смеси: — источник зажигания; — направления движе-ния фронта пламени.
Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.
Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.
По степени сгорания, т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным.
Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении.
Другой пример: при недостатке кислорода углерод сгорает до угарного газа:
Если добавить O, то реакция идет до конца:
Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение.
Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь.
Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке:
, (4.1)
где: u — скорость газового потока;
n — кинетическая вязкость;
l – характерный линейный размер.
Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Reкр, Reкр
Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.
4.4. Нормальное горение.
В зависимости от скорости распространения пламени при кинетиче-ском горении может реализоваться либо нормальное горение (в пределах не-скольких м/с), либо взрывное дефлаграционное (десятки м/с), либо детона-ционное (тысячи м/с). Эти виды горения могут переходить друг в друга.
Нормальное горение – это горение, при котором распространение пламени происходит при отсутствии внешних возмущений (турбулентности или изменения давления газов). Оно зависит только от природы горючего вещества, т.е. теплового эффекта, коэффициентов теплопроводности и диф-фузии. Поэтому является физической константой смеси определенного со-става. В этом случае обычно скорость горения составляет 0,3-3,0 м/с. Нор-мальным горение названо потому, что вектор скорости его распространения перпендикулярен фронту пламени.
4.5. Дефлаграционное (взрывное) горение.
Нормальное горение неустойчиво и в закрытом пространстве склонно к самоускорению. Причиной этому является искривление фронта пламени вследствие трения газа о стенки сосуда и изменения давления в смеси.
Рассмотрим процесс распространения пламени в трубе (рис. 20).
Рис. 20. Схема возникнове-ния взрывного горения.
Сначала у открытого конца трубы пламя распространяется с нормаль-ной скоростью, т.к. продукты горения свободно расширяются и выходят на-ружу. Давление смеси не изменяется. Длительность равномерного распро-странения пламени зависит от диаметра трубы, рода горючего и его концен-трации.
По мере продвижения фронта пламени внутрь трубы продукты реак-ции, имея больший объем по сравнению с исходной смесью, не успевают вы-ходить наружу и их давление возрастает. Это давление начинает давить во все стороны, и поэтому впереди фронта пламени исходная смесь начинает двигаться в сторону распространения пламени. Прилегающие к стенкам слои тормозятся. Наибольшую скорость имеет пламя в центре трубы, меньшую – у стенок (из-за теплоотвода в них). Поэтому фронт пламени вытягивается в сторону распространения пламени, а поверхность его увеличивается. Про-порционально этому увеличивается количество сгораемой смеси в единицу времени, которое влечет за собой возрастание давления, а то в свою очередь – увеличивает скорость движения газа и т.д. Таким образом, происходит ла-винообразное повышение скорости распространения пламени до сотен мет-ров в секунду.
Процесс распространения пламени по горючей газовой смеси, при ко-тором самоускоряющаяся реакция горения распространяется вследствие ра-зогрева путем теплопроводности от соседнего слоя продуктов реакции, назы-вается дефлаграцией. Обычно скорости дефлаграционного горения дозвуко-вые, т.е. менее 333 м/с.
4.6. Детонационное горение.
Если рассматривать сгорание горючей смеси послойно, то в результате термического расширения объема продуктов сгорания каждый раз впереди фронта пламени возникает волна сжатия. Каждая последующая волна, двига-ясь по более плотной среде, догоняет предыдущую и накладывается на нее. Постепенно эти волны соединяются в одну ударную волну (рис. 21).
Рис. 21. Схема образования де-тонационной волны: Ро< Р1 < Р2 < Р3 < Р4 < Р5 < Р6 < Р7; 1-7 – нарастание давления в слоях с 1-го по 7-ой.
В ударной волне в результате адиабатического сжатия мгновенно уве-личивается плотность газов и повышается температура до Т 0 самовоспламе-нения. В результате происходит зажигание горючей смеси ударной волной и возникает детонация – распространение горения путем воспламенения удар-ной волной. Детонационная волна не гаснет, т.к. подпитывается ударными волнами от движущегося вслед за ней пламени.
Особенность детонации – она происходит с определенной для каждого состава смеси сверхзвуковой скоростью 1000-9000 м/с, поэтому является фи-зической константой смеси. Она зависит только от калорийности горючей смеси и теплоемкости продуктов сгорания.
Встреча ударной волны с препятствием ведет к образованию отражен-ной ударной волны и еще большему давлению.
Детонация – самый опасный вид распространения пламени, т.к. имеет максимальную мощность взрыва (N=A/t) и огромную скорость. Практически «обезвредить» детонацию можно лишь на преддетонационном участке, т.е. на расстоянии от точки зажигания до места возникновения детонационного горения. Для газов длина этого участка от 1 до 10 м.