Дезактивация что это такое
Перейти к содержимому

Дезактивация что это такое

  • автор:

Прилипчивая радиация: наведенная радиоактивность, радиоактивное заражение, дезактивация…

Многими людьми радиация представляется, как нечто «заразное»: считается, что если что-то подверглось воздействию радиации, оно само становится ее источником. Данные представления имеют свое рациональное зерно, но способность радиации «переходить» на облучаемые вещи очень сильно преувеличена. Многие люди думают, например, что можно «схватить дозу» от деталей разобранного рентгеновского аппарата, от рентгеновских снимков и даже от врача-рентгенолога. А сколько шума поднимается, когда начинают говорить о гамма-облучении продуктов питания для их стерилизации! Мол, нам же придется есть облученную, а значит, радиоактивную пищу. Ходят и вовсе нелепые слухи о том, что в пище, разогретой в микроволновке, «остаются микроволны», о том, что под действием бактерицидных ламп становится радиоактивным воздух в комнате, где они горели.

В этой статье я расскажу, как все есть на самом деле.

Когда радиация порождает радиацию

В 1934 году Фредерик и Ирен Жолио-Кюри, изучая взаимодействие альфа-частиц с атомами разных элементов, обнаружили, что некоторые из них — алюминий, бор, магний — испускают при бомбардировке альфа-частицами некое излучение, регистрируемое счетчиком Гейгера, которое не прекращается сразу после того, как источник альфа-лучей убрали, а быстро спадает по экспоненциальной зависимости. Эксперимент в камере Вильсона показал, что это излучение представляет собой поток позитронов, немногим ранее открытых в космических лучах. Супруги Жолио-Кюри не были бы Кюри, если бы не догадались, что вновь столкнулись с явлением, которое веками пытались открыть алхимики, но так и не открыли. Альфа-частица, представляющая собой ядро гелия, сталкивалась с ядром алюминия, выбив из него нейтрон, и образовывалось ядро радиоактивного изотопа фосфора. И эту догадку удалось доказать чрезвычайно тонким и искусным химическим экспериментом, с помощью которого удалось выделить и обнаружить по радиоактивности ничтожное количество фосфора, которое невозможно было бы разглядеть ни в один микроскоп, если собрать все его атомы «в кучку». И этот фосфор еще и таял на глазах.

Последующие эксперименты открыли, что нейтроны, особенно замедленные прохождением через воду, парафин или графит, обладают еще большей способностью возбуждать ядерные реакции и активировать различные вещества. С открытием ядерных реакций деления, производящих огромное количество нейтронов, это стало с одной стороны большой проблемой — не только ядерное топливо, но и все элементы конструкции реакторов становились страшно радиоактивными. С другой же стороны таким способом стало возможно получать требуемые радионуклиды дешево и в большом количестве. Активированные нейтронным потоком термоядерного взрыва воздух и грунт являются дополнительным серьезным фактором поражения, так что «экологическая чистота» водородной бомбы — не более чем миф.

Так в каком же случае облучение вызывает ядерные реакции и приводит к появлению искусственной радиоактивности?

Как я уже сказал, особенной к этому способностью обладают нейтроны. Нетрудно догадаться, в чем причина: нейтрон легко проникает в ядро. Ему не требуется преодолевать электростатическое отталкивание, как протону или альфа-частице. Вместе с тем, нейтрон — это такой же строительный материал ядра, как и те протоны и нейтроны, точно так же способен вступать в сильное взаимодействие. Поэтому химический элемент с номером ноль и является тем самым «философским камнем» алхимиков. Вернее, их можно было бы назвать «алфизиками», если бы это слово не стало употребляться в отношении адептов эфира и торсионных полей.

Вызвать ядерное превращение может нейтрон любой энергии, вплоть до нуля. А вот другие частицы должны для этого иметь достаточно большую энергию. Про альфа-частицы (как и протоны) я уже говорил: им нужно преодолеть кулоновское отталкивание. Для легких элементов потребная энергия альфа-частицы составляет несколько мегаэлектронвольт — то есть такая, какой обладают альфа-частицы, испускаемые тяжелыми нестабильными ядрами. А более тяжелым нужны уже десятки МэВ — такую энергию можно получить только в ускорителе. К тому же с ростом массы ядра оно само все менее охотно вступает с альфа-частицей в реакцию: за железом добавление нуклонов в ядро идет с расходом, а не с выделением энергии. Если учесть еще и чрезвычайно низкую проникающую способность альфа-частиц в мишень, то становится ясно, что даже при очень мощном потоке альфа-частиц интенсивность искусственной радиоактивности получается невысокая.

А что же другие частицы? Электроны, фотоны? Им не нужно преодолевать отталкивание, но с ядром они взаимодействуют неохотно. Электрон может вступать лишь в электромагнитное и слабое взаимодействие и в большинстве случаев (за исключением ядер, нестабильных к электронному захвату) такая реакция возможна только если электрон передаст ядру значительную энергию, достаточную для отрыва нуклона от ядра. То же касается и фотона — фотоядерную реакцию может возбудить только фотон достаточно высокой энергии, но электрон гораздо быстрее, чем фотон, теряет энергию в веществе, из-за чего менее эффективен.

Спектр фотонов, излучаемых при радиоактивном распаде, заканчивается на 2,62 МэВ — это энергия квантов таллия-208, последнего члена радиоактивного ряда тория-232. И есть очень немного ядер, пороги фотоядерных реакций которых — ниже этой величины. Если точнее, то таких ядер два: дейтерий и бериллий-9

Первая реакция протекает под действием гамма-излучения свыше 2,23 МэВ, источником которого является таллий-208 (ряд тория), второй достаточно 1,76 МэВ — излучения висмута-214 (ряд урана-радия).

Данные реакции дают выход нейтронов, которые, в свою очередь, взаимодействуя с другими ядрами, рождают радиоактивные изотопы. Но сечения самих этих реакций невелики, в связи с чем заметная наведенная радиоактивность возможна только при очень большой интенсивности излучения. Для осуществления других фотоядерных реакций уже нужны гамма-кванты, энергия которых измеряется десятками и сотнями МэВ. При таких энергиях не только фотоны, но вообще все частицы — электроны и позитроны, мюоны, протоны и т.д., сталкиваясь с ядрами, вызывают ядерные реакции с достаточно большой эффективностью. Пучки таких частиц, получаемые на ускорителях, приводят к сильной активации практически любых исходно не радиоактивных мишеней.

Итак, действительно, в некоторых случаях при воздействии радиоактивных излучений на вещество образуются радиоактивные изотопы. Но обычно серьезную радиационную опасность представляет остаточная радиоактивность в двух случаях:

  • от мишеней, подвергшихся облучению нейтронами;
  • от мишеней, облученных в ускорителях.

Чтобы проиллюстрировать это, я провел небольшой опыт. Взяв напрокат в соседней лаборатории альфа-источник америций-241 активностью 1 МБк (это примерно в 100 раз больше активности источника, содержащегося в детекторе дыма HIS-07, который не составляет труда купить даже на Алиэкспрессе — ВНИМАНИЕ! Незаконный оборот радиоактивных веществ — статья 220 УК РФ!), я положил под него пластинку из алюминия. В результате, как и в опыте Жолио-Кюри (в котором использовался источник гораздо более мощный), я должен был получить фосфор-30, распадающийся на кремний-30 и позитрон с периодом полураспада 2,5 минут (и еще нейтрон, который тоже что-нибудь может активировать). Однако после получаса выдержки (для установления равновесия между рождением и распадом фосфора-30) я не смог задетектировать никакой заметной радиоактивности от пластинки алюминия. Я пытался для этого использовать счетчик Гейгера со слюдяным окном (позитроны детектируются им так же, как и электроны), а также сцинтилляционный детектор (который эффективно регистрирует их в линии 511 кэВ, соответствующей процессу аннигиляции). Причиной неуспеха опыта было то, что ядерные реакции под действием альфа-частиц случаются редко и даже несмотря на то, что в моем опыте алюминий подвергся воздействию как минимум полумиллиарда альфа-частиц, за это время образовалось всего несколько тысяч радиоактивных атомов, большая часть из которых за время облучения просто распалась. Возможно, мне удалось бы обнаружить позитроны в камере Вильсона благодаря практически нулевому природному фону позитронов, но ее я еще не доделал (когда сделаю — это будет хорошей темой для статьи).

Невидимая радиоактивная грязь

В большинстве случаев, за исключением вышеописанных, за наведенную радиоактивность принимают загрязнение радиоактивными изотопами на поверхности вещей и предметов. Дело в том, что при периоде полураспада в месяцы, годы и десятки лет количество вещества, испускающего пугающие уровни радиации — поистине ничтожно. Помните миллиграмм радия, который дает 8,4 Р/ч на расстояниии в сантиметр? У него период полураспада 1600 лет. А если период полураспада будет 1,6 года, а энергия гамма-квантов та же самая, что у радия? Тогда этот миллиграмм будет «светить» на том же расстоянии уже 8400 Р/ч.

Когда имеют дело с радиоактивными изотопами, в большинстве практических случаев их количество ничтожно. Это так называемые индикаторные количества, о которых судят по их радиоактивности. И в таких случаях во весь рост встает явление адсорбции — осаждения и «прилипания» вещества на поверхность раздела фаз.

Радиохимикам все время приходится воевать с адсорбцией. Из-за нее можно полностью потерять радиоактивный изотоп во время операций с ним просто из-за того, что весь он осел на стенках пробирки или стаканчика. Приходится подбирать состав «фонового» раствора, но часть изотопа все равно теряется, и увы, зачастую неизвестная. Приходится делать параллельный опыт в абсолютно тех же условиях (вплоть до пробирок из одной коробки) либо добавлять в раствор метку выхода — другой радиоактивный изотоп того же химического элемента. А можно сесть в калошу и другим способом: изотоп, раствор которого ранее содержался в стакане, осел на стенку и, несмотря на последующее мытье и ополаскивание сначала кислотой, потом дистиллированной водой, попал в следующую пробу. Стакан же при этом казался абсолютно, безукоризненно чистым.

Такой же безукоризненно чистой может казаться любая вещь, но тем не менее, имеющееся на ее поверхности (а также внутри сообщающихся с ней пор, щелей и т.п.) излучающую грязь. И не только вещь: в зоне радиационного поражения радиоактивными могут стать кожа и волосы пострадавших людей, шерсть животных. И далеко не во всех случаях эта активность легко удаляется. В большинстве случаев дезактивация сильно загрязненных радионуклидами объектов сложна, а во многих случаях она становится безуспешной.

В отличие от наведенной радиоактивности, которая обычно прочно закреплена на своем носителе, загрязнение радионуклидами находится на его поверхности и поэтому легко переходит на другие объекты, на руки людей и затем попадает в их организм, подвергая его внутреннему облучению.

Дезактивация — методы и средства

Простейшим способом дезактивации является обычное мытье с мылом или другими поверхностно-активными веществами. Это метод, который подходит почти для всего — с мылом помыть можно и асфальт, и стены дома, и живого человека, и редкую картину или скрипку. В последнем случае это делается осторожно, протирая поверхность смоченным в мыльном растворе отжатым тканевым тампоном и немедленно протирая таким же тампоном с чистой водой, а затем удаляя остатки воды фильтровальной бумагой. Таким образом излучение скрипки, лежавшей в самые горячие дни Чернобыльской катастрофы рядом с открытым окном киевского дома и «светившей» около 1 мР/ч «условно» вплотную, удалось снизить до вполне приемлемого, и спасти тем самым инструмент. Существуют специализированные средства для дезактивации, содержащие помимо ПАВ также комплексообразователи (такие, как ЭДТА), ионообменные смолы, цеолиты и другие сорбенты. Комплексообразователи способствуют переводу радионуклидов, образующих катионы, в раствор, а ионообменные компоненты и сорбенты наоборот, удаляют их из раствора, переводя в связанную форму, но уже не на дезактивированной поверхности. Так, хорошо известно (и активно применяется у нас в лаборатории) новосибирское средство для дезактивации «Защита», работающее по такому принципу.

Но такого средства нередко недостаточно: радионуклиды оказываются прочно связаны с поверхностью, находятся глубоко в порах и микротрещинах. В таких случаях приходится использовать гораздо более жесткие способы — обрабатывать поверхности кислотами, растворяющими поверхностный слой металла и корку ржавчины на нем, и способствующих десорбции радиоактивных загрязнений. Применяют также сильные окислители, разрушающие органические загрязнения на поверхности, на которые также налипает радиоактивная пыль. На АЭС для дезактивации оборудования часто используют двухванный способ дезактивации, когда сначала обрабатывают детали щелочным раствором перманганата калия, а затем кислотой.
Для металлических поверхностей эффективным способом дезактивации является электрохимический метод. Цель примерно та же — удалить поверхностный слой металла, слои коррозии, пропитанные радионуклидами. Но резко снижается количество жидких радиоактивных отходов, так как можно пользоваться минимальным количеством электролита. Это так на называемая полусухая электролитическая ванна — на дезактивируемую поверхность накладывается ткань или войлок, пропитанные электролитом и сверху на нее кладется второй электрод). Дезактивируемая деталь или поверхность является анодом, а в качестве катода используют обычно свинцовый лист, легко деформируемый для плотного облегания дезактивируемой поверхности.

Для дезактивации трудноудаляемых радиоактивных загрязнений, как, например, с вертолетов, летавших над аварийным чернобыльским реактором, использовали и пескоструйную обработку. Впрочем, она порождает огромное количество радиоактивной пыли, сильно повреждает дезактивируемую поверхность и в целом имеет невысокую эффективность.

Если вдруг, не дай бог, вы попадете в зону радиоактивного заражения и вам потребуется что-либо срочно дезактивировать, то рекомендую средство для мытья посуды («Фейри» и т.п.) или любой стиральный порошок с добавлением щавелевой кислоты. Также можно использовать такие бытовые чистящие средства для сантехники, как Cif, в них уже есть кислота.
От наведенной радиации дезактивация обычно не помогает. Ведь ее источник находится в глубине излучающего объекта — нейтроны обладают очень высокой проникающей способностью. Но далеко не всегда невозможность дезактивации означает, что источник излучения с ней связан.

Наведенная радиация — реальное явление, но оно так обросло мифами, что само стало своего рода мифом. В реальности образование наведенной радиоактивности нужно учитывать в ряде случаев, но при обычном обращении с радиоактивными веществами и другими источниками ионизирующего излучения бояться наведенной радиации не нужно. А вот загрязнение радионуклидами — штука не только более реальная, но и более опасная.

Значение слова дезактивация

удаление ра-дноактивных веществ (РВ) с оружия, военной техники, наружных поверхностей корабля, обмундирования, местности и других заражённых объектов, а также из воды в целях предотвращения поражения личного состава. Является частью специальной обработки, может быть частичной н полной. Д. местности проводится путём смывания РВ растворами (водой), снятия заражённого слоя грунта (снега); Д. воды — фильтрованием, перегонкой, а также с помощью ионообменных смол Д. продовольствия — путём обработки или замены заражённой тары. Заражённая готовля пища уничтожается.

В словаре военных терминов, составленном специалистами Военной академии Генерального штаба Вооруженных Сил РФ, содержится более тысячи словарных статей. Основная цель издания — формирование у читателя целостного понимания соответствующей терминологии. Словарные статьи составлены на основе анализа военной документации, уставной российской и зарубежной документации по материалам открытой печати.

Издание будет интересно курсантам военных вузов, знакомящимся с терминологией военного дела, а также специалистам в области обороны, безопасности, строительства ВС РФ, иных силовых министерств и ведомств.

Пограничный словарь

удаление радиоактивных веществ с обмундирования (одежды), оружия, боевой техники, транспорта, продовольствия, местности и т.п. со снижением степени заражения до допустимых норм; одно из мероприятий по ликвидации последствий применения противником ядерного оружия (часть специальной обработки). Д. может быть частичной и полной.

Пограничный словарь представляет собой толковый словарь терминов и определений пограничной службы и смежных с ней областей, сведения о целях и задачах функционирования службы, а также сокращений и применяемого в современных пограничных войсках России сленга. Словарные статьи дополнены также синонимами, облегчающими понимание термина. Термины, имеющие исторический характер, отмечены соответствующими сокращениями, например, «Отдельный корпус пограничной стражи (ист.)».

Словарь будет полезен личному составу пограничных застав, контрольно-пропускных пунктов и других подразделений пограничных войск, а также курсантам учебных заведений.

Термины и определения по охране окружающей среды

удаление радиоактивных веществ с какой-либо поверхности или из какой-либо среды, включая организм человека (Нормы радиационной безопасности НРБ-96.)

Словарь «Термины и определения по охране окружающей среды» содержит более пятисот основных терминов и понятий, используемых в сфере деятельности по охране окружающей среды и природоохранным мероприятиям. В словаре кратно изложены основные понятия общей экологии, экологических проблемах мирового уровня, также затрагиваются темы рационального природопользования. Для удобства термины расположены по тематическим разделам. Если в статью включены два сходных по значению термина, они отмечены квадратными скобками.

Словарь адресован ученикам старших классов, студентам вузов естественнонаучной направленности и всем интересующимся экологией и проблемами охраны окружающей среды.

Военно-морской словарь

механическое удаление радиоактивных веществ с вооружения, военной техники, обмундирования и других объектов с целью предотвращения поражения личного состава. На кораблях осуществляется главным образом забортной водой.

Военно-морской словарь — это научно-справочный словарь, в котором собраны понятия и определения военно-морской отрасли, как современные, так исторические, сегодня вышедшие из употребления.

Словарные статьи дают лаконичное, унифицированное толкование слов (всего словарь насчитывает более 11 тысяч статей) и снабжены иллюстрациями. В статьях отражено современное состояние морского дела, приводятся характеристики кораблей, летательных аппаратов, различных видов применяющегося на флоте оружия, техсредств. Также включены сведения о знаменитых флотоводцах и героях различных военных морских кампаний.

Словарь будет интересен читателям, увлекающимся историей и традициями флота.

Термины атомной энергетики

удаление радиоактивных загрязнений с рабочих поверхностей и обезвреживание радиоактивных отходов химическим, химико-механическим, электрохимическим, пароэмульсионным или гидродинамическим методом.

При дезактивации оборудования ЯЭУ можно выделить три группы мероприятий:

1. дезактивацию первого контура без разборки путем циркуляции специальных растворов;

2. дезактивацию съемного оборудования, связанную с демонтажем (например, дезактивацию выемной части ГЦН или приводов СУЗ);

3. дезактивацию поверхностей помещений, наружных поверхностей трубопроводов, инструмента и т.п.

Словарь «Термины атомной энергетики» представляет собой отраслевой научный словарь, содержащий термины по атомной энергетике, применяемые на различных этапах жизненного цикла атомного энергетического объекта: научно-исследовательская и опытно-конструкторская работа, проектирование, строительство, оборудование, монтаж, пусконаладка и эксплуатация. В словарь включены как классические термины, так и новые, возникшие в недавнее время в связи с развитием атомно-энергетической отрасли, в том числе включая реакторостроение, ядерную физику, химию (водоочистку и водно-химический режим), антирадиационную защиту и охрану окружающей среды.

Словарь терминов атомной энергетики

удаление радиоактивного загрязнения с рабочих поверхностей и обезвреживание радиоактивных отходов химическим, химико-механическим, электрохимическим или иным способом.

Словарь терминов атомной энергетики — справочный словарь, отражающий термины и определения в области использование атомной энергии. Словарные статьи сгруппированы в тематические разделы в тематические подразделы в зависимости от области применения (АЭС, ядерные установки и т.п.). Словарь составлен с учетом понятий, содержащихся в федеральных нормах и правилах; с этой целью в конце определения приведена ссылка на источник.

Адресовано специалистам атомной энергетики, студентам и преподавателям вузов.

Словарь терминов МЧС

удаление радиоактивных веществ (РВ) с поверхностей оборудования, техники, вещевого имущества, средств защиты, продовольствия, местности, сооружений, а также из воды или снижение уровня радиоактивного загрязнения с каких-либо поверхностей или из какой-либо среды. Является частью специальной обработки, м.б. частичной и полной. Частичная Д. проводится своими силами и средствами без отрыва формирований или воинских частей ГО от выполнения своих специальных задач. При этом используются табельные и подручные средства. Полная Д. проводится, как правило, после выполнения специальных задач в незаражённых районах или на пунктах специальной обработки. Д. должна обеспечить снижение уровня загрязнённости до безопасных пределов, что устанавливается дозиметрическим контролем. Д. местности производится путём смывания РВ растворами (водой), снятия загрязненного слоя грунта (снега); Д. воды — фильтрованием, перегонкой, а также с помощью ионообменных смол; Д. металла — методом переплавки и удаления радиоактивных веществ со шлаком, Д. поверхности — погружением объектов в рабочую среду или нанесением на поверхность сорбентов и последующее их удаление с радиоактивными веществами, Д. продовольствия — путём обработки или замены зараженной тары. Зараженная готовая пища и хлеб уничтожаются. Для МЧС России наибольший интерес представляют три основных группы методов: жидкостная Д., сухая полимерная Д., механическая Д. Жидкостная Д. базируется на двух наиболее распространенных растворах: СФ-2У и СФ-3К, а также растворах, приведенных в Приложении 6 СПОРО-2002 (Санитарные правила обращения с радиоактивными отходами СП 2.6.6.1168-02). Сухая полимерная Д. (точнее: работа по улучшению радиационной обстановки), представлена многочисленными полимерными покрытиями (изолирующие, локализующие, пылеподавляющие, аккумулирующие, дезактивирующие, клеевые захваты).

Словарь терминов МЧС — справочное издание, содержащее в себе термины и определения, применяемые в медицине катастроф и области гражданской защиты населения при наступлении чрезвычайных ситуаций природного и антропогенного (техногенного) характера, в том числе возникших вследствие военных действий, а также в области обеспечения противопожарной защиты.

Словарь рекомендуется использовать при подготовке специалистов в области защиты населения и территорий; он также будет полезен сотрудникам спасательных служб и всем интересующимся вопросами защиты при наступлении различных бедствий.

Гражданская защита. Понятийно-терминологический словарь

удаление или снижение уровня радиоактивного загрязнения с какой-либо поверхности или из какой-либо среды.

Понятийно-терминологический словарь гражданской защиты представляет собой словарь, включающий наиболее распространенные термины из области защиты населения и территории в условиях наступления чрезвычайных ситуациях природной и антропогенной (техногенной) природы, а также в военное время. Главная задача данного словаря — формирование у читателя единой базы понятий в этих сферах, облегчения понимания правовых документов, регламентирующих гражданскую защиту.

Словарь адресован в первую очередь специалистам органов МЧС и других органов реагирования, принимающих участие в защите населения и территорий, а также всем интересующимся.

Краткий словарь оперативно-тактических и общевоенных терминов

удаление радиоактивных веществ с оружия, боевой техники, имущества, оборонительных сооружений, местности, а также из воды, продовольствия и фуража. Проводится с целью предотвращения поражения личного состава радиоактивными веществами. Частичная д. производится непосредственно в зараженном районе или вне его, радиоактивные вещества при частичной д. удаляются с тех мест зараженных объектов, к которым личному составу приходится прикасаться; полная д. производится только в незараженном районе и, как правило, после выполнения боевой задачи либо в период боевого затишья по решению старшего начальника.

Краткий словарь оперативно-тактических и общевоенных слов (терминов), изданный в конце 50-х годов прошлого века, представляет собой справочное издание, адресованное в первую очередь курсантам военных учебных заведений и офицерам.

Цель настоящего издания — сформировать у читателя общее представление о терминологии, словах и понятиях, встречающихся в средствах массовой информации, в учебной литературе. С этой целью в словарь включены только самые основные термины. Для более подробного изучения терминологии авторы рекомендуют обращаться к другим словарям и энциклопедиям.

Энциклопедический словарь

удаление радиоактивных загрязнений с техники, вооружения, зданий, почвы, одежды, продовольствия, из воды и других зараженных объектов. Одно из мероприятий по ликвидации последствий применения ядерного оружия, аварий ядерных реакторов и др.

Энциклопедический словарь — справочный словарь, статьи которого содержат более полное, в сравнении с обычным словарем, описание данного термина или определения.

Энциклопедический словарь может быть общим или специализированным, освещающим определенную дисциплину или область знаний, например, медицину, искусство, астрономию, историю. Сведения в словаре могут быть сосредоточены вокруг конкретной этнической, культурной или академической перспективы, например, Военно-исторический энциклопедический словарь России, Словарь наук и так далее.

Энциклопедические словари, как правило, содержат в себе иллюстрации, карты и другой наглядный материал.

Словарь Ожегова

ДЕЗАКТИВАЦИЯ, и, ж. (спец.). Удаление радиоактивных загрязнений с заражённых объектов.

| прил. дезактивационный, ая, ое.

Словарь С. И. Ожегова — лингвистический толковый словарь русского языка, который является самым первым из появившихся в России (тогда — в Советском Союзе) после Октябрьской революции.

Составление словаря началось в тридцатых годах прошлого века и было доведено до финала в 1949 году, однако впоследствии словарь несколько раз дополнялся и перерабатывался самим его создателем.

В словаре представлено около 80 тысяч слов и фразеологизмов, большое количество общелитературной и просторечной лексике, дана информация по правильному написанию и произношению слова, приведены примеры употребления.

Словарь Ефремовой

ж.
Удаление радиоактивных загрязнений с поверхности различных предметов,
сооружений и т.п.

Толково-образовательный словарь русского языка Т.Ф. Ефремовой представляет собой один из наиболее полных на настоящее время словарей русского языка. В словаре содержится более 136 тысяч словарных статей, в которых в свою очередь вниманию читателя представлено более 250 тысяч семантических единиц, в том числе служебные части речи.

Впервые словарь был издан в 2000 году и с тех пор регулярно переиздается. Одна из особенностей словаря — формирование заглавных показателей есть через связь по значению слов. Уделено внимание и омонимам. Словарь ориентирован на широкий круг читателей.

Дезактивация

Дезактивация – это удаление радиоактивных веществ с поверхностей оборудования, техники, вещевого имущества, средств защиты, продовольствия, местности, сооружений, с других объектов, а также из воды; является частью специальной обработки.

Проведение дезактивации

Дезактивация

Подразделяется на частичную и полную.

Частичная дезактивация проводится силами самих формирований или воинских частей войск гражданской обороны, подвергшихся загрязнению радиоактивными веществами, без отрыва от выполнения своих задач с использованием табельных и подручных средств.

Полная дезактивация проводится, как правило, после выполнения специальных задач в незараженных районах или на пунктах специальной обработки с использованием табельных средств дезактивации, с привлечением подразделений войск гражданской обороны, а при больших объемах дезактивационных работ — подразделений войск радиационной, химической и биологической защиты и инженерных войск. Дезактивация должна обеспечить снижение уровня загрязненности до безопасных пределов, что устанавливается дозиметрическим контролем.

Способы дезактивации

Загрязненные поверхности техники, вооружения и других объектов дезактивируются физико-химическим способом — смыванием радиоактивных веществ растворами поверхностно-активных (моющих) веществ, содержащих комплексообразователи, которые препятствуют проникновению радиоактивных частиц в окрашенные поверхности, или механическим способом — смыванием радиоактивных веществ сильной струей воды с помощью автомобильных разливочных станций, поливочных машин, мотопомп и других средств, а также высокотемпературной парожидкостной струей под большим давлением.

Дезактивация обмундирования, одежды и другого вещевого имущества осуществляется методом стирки или экстракции в органических растворителях.

Участки местности дезактивируются снятием загрязненного слоя грунта (снега), дороги с твердым покрытием — смыванием специальными растворами из авторазливочных станций и поливомоечных машин. В целях исключения вторичного загрязнения в результате пылеобразования обочины дорог, дороги без твердых покрытий, участки местности покрываются пылеподавляющими составами.

Дезактивация воды осуществляется фильтрованием, перегонкой, а также с помощью ионообменных смол.

Дезактивация продовольствия производится путем обработки или замены загрязненной тары. Загрязненные радиоактивными веществами — готовая пища и хлеб — уничтожаются.

Для удаления радиоактивных веществ с поверхностей зданий и сооружений, внутренних помещений, а также участков местности с твердым покрытием широко используется сухая полимерная дезактивация, осуществляемая с помощью изолирующих, локализующих, аккумулирующих дезактивирующих и других полимерных покрытий. Снижение радиоактивной загрязненности поверхностей объектов до допустимых норм может произойти также за счет естественного распада радиоактивных веществ.

Контроль полноты дезактивации осуществляется с помощью дозиметрических приборов .

Источник: Дезактивация. Зимон А.Д., Пикалов В.К. — М., 1994.

ДЕЗАКТИВАЦИЯ

Дезактивация — удаление радиоактивных веществ с поверхности различных объектов или сред. Дезактивация является одним из основных мероприятий по противорадиационной защите.

Радиоактивное загрязнение объектов окружающей среды и человека может произойти в результате аварий на ядерных установках и устройствах, использующих радиоактивные источники, при транспортировке, удалении и хранении радиоактивных отходов (см.); вследствие нарушений техники безопасности при работе с радиоактивными веществами (см.), в результате ядерных взрывов и применения атомного и термоядерного оружия.

На предприятиях и в учреждениях, где персонал имеет контакт с радиоактивными материалами, Дезактивация является плановым мероприятием. Обнаружение радиоактивного загрязнения и его количественная оценка производятся с помощью дозиметрической и радиометрической аппаратуры (см. Дозиметрия ионизирующих излучений, дозиметры; Радиоизотопные диагностические приборы).

Условно различают три вида радиоактивного загрязнения: поверхностное, объемное и структурное (напр., наведенная радиоактивность почвы в результате нейтронного излучения ядерного взрыва). Поверхностное радиоактивное загрязнение характеризуется наличием радиоактивных веществ на поверхности различных предметов и оборудования, кожных покровов и т. д. Под объемным загрязнением понимают гомогенное распределение радиоактивных веществ в жидкой, газовой или в твердой средах.

Содержание

Теория и практика

Теория и практика Дезактивации основаны на знании закономерностей радиоактивного загрязнения и физико-химических процессов, лежащих в его основе. Характер взаимодействия и прочность связи радиоактивных веществ с объектом загрязнения обусловлены процессами адгезии, абсорбции и адсорбции, хемосорбции, комплексообразования и ионного обмена. Напр., при попадании радиоактивных веществ на поверхность кожи может происходить адгезионное взаимодействие радиоактивных частиц с поверхностью, адсорбция их поверхностными структурами кожи, хемосорбция, комплексообразование и ионный обмен с участием активных радикалов водно-жировой пленки, покрывающей кожу, и биохимических компонентов этого органа. Роль каждого из этих процессов определяется агрегатным состоянием и физ.-хим. свойствами радиоактивных веществ и их носителей и особенностями объекта загрязнения. При прочих равных условиях прочность связи радиоактивного загрязнения за счет физ. сил сцепления меньше, чем вследствие хим. взаимодействия. Поэтому удаление радиоактивного загрязнения в твердой фазе (напр., в виде пыли) достигается легче, чем Дезактивация загрязнения радиоактивными р-рами. Радиоактивные вещества, находящиеся в р-рах, не содержащих изотопных носителей, более прочно фиксируются на поверхностях и труднее дезактивируются, чем радиоактивные вещества в виде р-ров с носителями и балластными солями.

Сорбция радиоактивных веществ на поверхностях зависит от их хим. состояния в р-рах и ионного потенциала элемента. Прочность связи многих элементов увеличивается при значениях pH загрязняющего р-ра, близких к значениям pH перехода радионуклида в коллоидное состояние и с возрастанием его ионного потенциала. В результате диффузии и других процессов радиоактивные вещества могут частично проникать в глубь покрытий из полимерных материалов и в стекло. На металлических поверхностях этому способствует коррозия и образование окисной пленки. Эффективность Д. снижается с увеличением времени контакта радиоактивных веществ с объектами. Радиоактивные вещества в зависимости от их природы и физ.-хим. свойств могут находиться в поверхностных водах в ионодисперсном (молекулярном), псевдоколлоидном (коллоидном) и грубодисперсном (частицы > 0,1 мкм) состояниях. На преобладание той или иной формы в свою очередь оказывает влияние хим. состав воды и наличие в ней органических примесей.

Методы дезактивации

Для Дезактивации применяют механический, физ.-хим. и биологический методы; чаще всего используют комбинацию первых двух. Арсенал способов и средств Д. весьма обширен. Механический метод Д. предусматривает удаление поверхностного слоя радиоактивного загрязнения путем срезания, соскабливания, обработки с помощью пескоструйных аппаратов и т. д. Физ.-хим. методы основаны на разбавлении, перегонке (дистилляции), осаждении, ионообменном поглощении радиоактивных веществ из р-ров, на использовании специальных фильтрующих материалов для очистки воздуха, применении различных дезактивирующих р-ров и т. п. Биол, метод Д. основан на сорбции радиоактивных веществ почвой, активным илом, планктоном и перифитоном. С этой целью используют биологические фильтры (см.), аэротенки. Биол, метод применяется в основном для Д. сточных вод (см. Биологическая очистка). При загрязнении короткоживущими радиоактивными веществами в ряде случаев используют пассивный метод, который сводится к выдержке объекта загрязнения (без какой-либо обработки) в течение определенного периода, необходимого для естественного распада радиоактивного вещества до безопасного уровня. Этим методом пользуются для Д. загрязненного воздуха (выдерживая его в специальных емкостях — газгольдерах), а также некоторых видов оборудования, сточных вод перед сбросом в канализацию и т. д. Выбор методов Д. зависит от объекта Д. и характера загрязнения. При ликвидации последствий аварий организация, объем и очередность работ по Д., в том числе выбор методов Д., определяются масштабами загрязнения и характером сложившейся обстановки.

Средства и способы дезактивации

Для Дезактивации различных поверхностей и оборудования, средств индивидуальной защиты и кожных покровов чаще применяют жидкостную обработку. Основная ее цель — разрушение связи радиоактивных ионов (или носителей) с поверхностью и предотвращение повторной сорбции радиоактивных веществ. Различают простые и сложные дезактивирующие средства.

Простые состоят из одного ингредиента (разбавленные к-ты, комплексообразователи, окислители, некоторые мыла, поверхностно-активные вещества и др.); сложные средства — многокомпонентные смеси или специально подобранные рецептуры, механизм действия которых носит комплексный характер и складывается из особенностей действия каждого компонента. К числу таких средств относят синтетические моющие средства (см.), которые в свою очередь сочетают с комплексообразующими агентами, твердыми наполнителями и т. д.

В ряде случаев применяют безводные (сухие) способы Дезактивации, основанные на связывании радиоактивных веществ быстро твердеющими составами (пленками). Это дает удовлетворительные результаты при сухом аэрозольном загрязнении поверхностей. В качестве пленкообразующих составов используют водорастворимый латекс в сочетании с детергентами (см.), поливинилацетатную эмульсию и др. Такие составы наносят на поверхность различных объектов и оборудования перед началом ремонтных работ и после их окончания. Затем оба слоя покрытий снимают и направляют в места захоронения радиоактивных отходов.

Вследствие высокой скорости проникновения радиоактивных веществ в глубь кожи, особенно находящихся в органических растворителях, Д. кожных покровов должна осуществляться в возможно более ранние сроки после загрязнения. Гладкая эластичная кожа, покрытая водно-жировой пленкой, легче очищается, чем грубая, покрытая волосами кожа с трещинами. Микротравмы кожи резко (в десятки, сотни раз) увеличивают всасывание радиоактивных веществ. Средства Д. кожи должны быть высокоэффективными, не усиливать перкутанную резорбцию веществ и не оказывать вредного влияния на организм при длительном применении.

Простым и рентабельным способом очистки кожи от радиоактивного загрязнения является мытье теплой водой и мылом с помощью щетки. Однако при высоких плотностях загрязнения эта процедура не обеспечивает надлежащей Д. Наиболее полно указанным требованиям отвечают дезактивирующие средства, в рецептуру которых входят поверхностно-активные вещества (ПАВ), комплексообразователи, адсорбенты и другие твердые наполнители. Молекулы и ионы ПАВ, адсорбируясь на границе раздела, понижают поверхностное натяжение р-ра, способствуя диспергированию и стабилизации загрязнения в р-ре. Комплексообразователи связывают радиоактивные ионы в прочные водорастворимые и труднодиссоциируемые соединения. Специальные твердые наполнители, выполняя функции механического фактора мытья, способствуют также адсорбции или ионообменному поглощению радиоактивных веществ из р-ра.

В СССР созданы и внедрены в практику высокоэффективные дезактивирующие средства. Их применяют для Д. кожи от загрязнения продуктами деления урана, плутония, трансурановых элементов и ряда других нуклидов. Для Д. кожи от полония, радиоактивных изотопов ртути и висмута могут быть использованы 1—3% р-ры соляной и лимонной к-т, комплексообразователей, а также 5% р-ры унитиола или оксатиола. Однако применение этих агентов должно быть ограниченным из-за их раздражающего действия на кожу при длительном употреблении и способности усиливать перкутанную резорбцию. По этой причине не рекомендуется применять органические растворители. Обработка кожных покровов должна продолжаться не более 10—12 мин.; дальнейшая очистка не влияет на удаление прочно фиксированного радиоактивного загрязнения. При употреблении высокоэффективных дезактивирующих средств в большинстве случаев указанного времени достаточно для полного удаления радиоактивных веществ.

Дезактивация пневмокостюмов, комбинезонов, халатов, обуви и т. д. производится в специально оборудованных механизированных прачечных. Выбор режимов Д. определяется характером и степенью загрязнения, а также видом материала, из к-рого они изготовлены. Средства индивидуальной защиты из полимерных материалов обрабатывают щавелевокислыми р-рами, содержащими натриевые соли сульфожирных к-т или сульфанол. Для Д. хлопчатобумажной одежды применяют р-ры, содержащие комплексообразующие соединения. Их применяют или совместно с мылом, или с синтетическими моющими средствами. В отдельных случаях при высоких уровнях загрязнения для Д. используют кислые р-ры (pH<2) и р-ры, содержащие окислители. Обувь трудно очищается от радиоактивного загрязнения. Наиболее перспективен в этом отношении метод ультразвуковой обработки.

Материалы покрытий из полиамидов хуже очищаются, чем покрытия из поливинилхлорида. Этот материал в свою очередь дезактивируется несколько труднее, чем полиэтилен. К легко дезактивируемым материалам покрытий относятся полиметилметакрилат, винидур, сополимеры стирола и винипласт. Для Д. защитных покрытий, загрязненных радиоактивными веществами неизвестного состава или смесью веществ, рекомендован 1% р-р контакта Петрова (см. Петрова контакт) с добавлением 0,5% р-ра щавелевой к-ты. Поверхности из нержавеющей стали обрабатывают 10% р-ром лимонной к-ты с последующей очисткой 0,5% р-ром азотной к-ты. Крашеные поверхности предварительно обрабатывают органическими растворителями. Д. лабораторной посуды достигается обработкой р-рами неорганических к-т или хромовой смесью.

Широко применяемые в практике очистки природных вод способы водоподготовки (объемная коагуляция солями железа и алюминия и фильтрация) практически неэффективны для удаления из воды растворимых форм радионуклидов (I, Sr, Ba, Cs, Mo и др.), но обеспечивают извлечение более 90% радиоактивных веществ, ассоциированных твердой фазой, и радиоизотопов легко гидролизующихся элементов (Zr, Nb, Ce, Pr, La, Pu и др.). Эти способы не могут быть использованы для эффективной очистки воды от радиоактивного загрязнения в чрезвычайной обстановке и тем более в мирное время. Поэтому в практике Д. воды объемная коагуляция и фильтрация являются предварительными способами обработки воды, а в качестве основных выступают — сорбция и ионообменное поглощение. На такой последовательности процессов очистки основаны технологические схемы в установках, предназначенных для Дезактивации воды. В качестве высокоэффективных сорбентов используются некоторые марки активированных углей, в частности карбоферрогель, природные иониты (вермикулит, бентонит, цеолиты, монтмориллонитовые глины и др.) и синтетические ионообменные сорбенты.

Очистка воздуха от радиоактивной пыли и аэрозолей производится на фильтрах-поглотителях различного типа. В качестве фильтрующих материалов наибольшее распространение получили ткани, разработанные И. В. Петряновым (см. Респираторы).

Дезактивация в военно-полевых условиях

В военно-полевых условиях дезактивационные работы осуществляются с помощью простых приемов и доступных средств.

Удаление радиоактивных веществ с поверхности кожи и видимых слизистых оболочек людей проводится при помощи санитарной обработки (см.). Дезактивация в военно-полевых условиях осуществляется в отношении обмундирования и снаряжения, боевой техники и оружия, сооружений, а также воды, продовольствия и фуража. Санобработка и Д. может быть частичной и полной. Проведение мероприятий по санобработке и Д. не должно препятствовать выполнению боевых задач. При частичной Д. радиоактивные вещества удаляют с тех частей и деталей оружия или техники, к к-рым личный состав вынужден прикасаться в процессе боевой деятельности, а также с верхнего обмундирования и средств противохимической защиты, надетых на людей. При этом объекты Д. протирают сухой ветошью, обмывают, а обмундирование и средства защиты вытряхивают и очищают. Частичную Д. поверхностей, покрытых смазкой, производят ветошью, смоченной растворителем (керосин, бензин, дизельное топливо и др.).

При полной Д. радиоактивные вещества удаляют со всех поверхностей оружия, боевой техники, обмундирования и средств защиты.

Д. обмундирования, снаряжения и обуви на медпунктах или в лечебных учреждениях производят на специальной площадке, к-рая развертывается вблизи площадки санобработки. Работа на этой площадке регламентируется специальными инструкциями.

Д. воды производят только в тех случаях, когда не представляется возможным организовать водоснабжение личного состава незараженной водой. Для Д. воды используют соответствующие инженерные средства.

Дезактивация продовольствия и фуража производят различными способами в зависимости от вида продовольствия и характера упаковки, а именно: обмыванием тары водой или дезактивирующим р-ром с одновременным протиранием щетками или ветошью; перекладыванием продуктов из зараженной тары в чистую; тщательным обмыванием некоторых видов продуктов струей воды; удалением зараженного слоя продукта. После Д. продуктов питания проводится дозиметрический контроль.

Библиография:

Ильин Л. А. и др. Радиоактивные вещества и кожа, М., 1972; Кузнецов Ю. В., Шебетковский В. Н. и Трусов А. Г. Основы очистки воды от радиоактивных загрязнений, М., 1974, библиогр.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *